Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380078889> ?p ?o ?g. }
- W4380078889 endingPage "13" @default.
- W4380078889 startingPage "1" @default.
- W4380078889 abstract "Managers gain new insights into how operational benefits can be achieved. Forecasting problems for passenger flow in airports are gaining interest among marketing researchers, but comparison of stochastic optimisation methods via deep learning forecasts with search query data is not yet available in the aviation field. To fill this gap, the current study predicts the demand of Madrid airport demand with Google search query data using H2O deep learning method. The findings indicate that there is a long-term relationship between search queries and actual passenger demand. Besides, search queries “fly to madrid,” and “flights to madrid spain” were found to be the cause of the actual domestic air passenger demand in Madrid. Also, to determine the best forecasting accuracy, stochastic gradient descent (SGD) optimisers were used. Specifically, findings indicate that Adam is a better optimiser increasing forecasting accuracy for Madrid airports." @default.
- W4380078889 created "2023-06-10" @default.
- W4380078889 creator A5010799309 @default.
- W4380078889 date "2023-06-09" @default.
- W4380078889 modified "2023-10-03" @default.
- W4380078889 title "Deep Learning Models for Airport Demand Forecasting With Google Trends" @default.
- W4380078889 cites W1586335931 @default.
- W4380078889 cites W1970070532 @default.
- W4380078889 cites W1974284277 @default.
- W4380078889 cites W1991155410 @default.
- W4380078889 cites W2006632042 @default.
- W4380078889 cites W2028501442 @default.
- W4380078889 cites W2030702544 @default.
- W4380078889 cites W2038642139 @default.
- W4380078889 cites W2064638174 @default.
- W4380078889 cites W2103127622 @default.
- W4380078889 cites W2108298905 @default.
- W4380078889 cites W2110603299 @default.
- W4380078889 cites W2117239687 @default.
- W4380078889 cites W2135514714 @default.
- W4380078889 cites W2147634746 @default.
- W4380078889 cites W2154291363 @default.
- W4380078889 cites W2166801733 @default.
- W4380078889 cites W2166813622 @default.
- W4380078889 cites W2170275921 @default.
- W4380078889 cites W2280029926 @default.
- W4380078889 cites W2346188678 @default.
- W4380078889 cites W2400339080 @default.
- W4380078889 cites W2400682180 @default.
- W4380078889 cites W2460842349 @default.
- W4380078889 cites W2500086770 @default.
- W4380078889 cites W2525059359 @default.
- W4380078889 cites W2566003805 @default.
- W4380078889 cites W2614628563 @default.
- W4380078889 cites W2618671800 @default.
- W4380078889 cites W2731205543 @default.
- W4380078889 cites W2736058807 @default.
- W4380078889 cites W2740686623 @default.
- W4380078889 cites W2765695790 @default.
- W4380078889 cites W2782225523 @default.
- W4380078889 cites W2884741544 @default.
- W4380078889 cites W2887355018 @default.
- W4380078889 cites W2888200178 @default.
- W4380078889 cites W2919115771 @default.
- W4380078889 cites W2939094371 @default.
- W4380078889 cites W2954962713 @default.
- W4380078889 cites W2956801422 @default.
- W4380078889 cites W2970748772 @default.
- W4380078889 cites W2974230996 @default.
- W4380078889 cites W3004577623 @default.
- W4380078889 cites W3007066689 @default.
- W4380078889 cites W3007723520 @default.
- W4380078889 cites W3008172172 @default.
- W4380078889 cites W3106909982 @default.
- W4380078889 cites W3187576193 @default.
- W4380078889 cites W3196366948 @default.
- W4380078889 cites W3203526435 @default.
- W4380078889 cites W4232524738 @default.
- W4380078889 cites W3007926003 @default.
- W4380078889 doi "https://doi.org/10.4018/ijcbpl.324086" @default.
- W4380078889 hasPublicationYear "2023" @default.
- W4380078889 type Work @default.
- W4380078889 citedByCount "0" @default.
- W4380078889 crossrefType "journal-article" @default.
- W4380078889 hasAuthorship W4380078889A5010799309 @default.
- W4380078889 hasBestOaLocation W43800788891 @default.
- W4380078889 hasConcept C108583219 @default.
- W4380078889 hasConcept C127413603 @default.
- W4380078889 hasConcept C146978453 @default.
- W4380078889 hasConcept C153294291 @default.
- W4380078889 hasConcept C154945302 @default.
- W4380078889 hasConcept C193809577 @default.
- W4380078889 hasConcept C202444582 @default.
- W4380078889 hasConcept C205649164 @default.
- W4380078889 hasConcept C2776637919 @default.
- W4380078889 hasConcept C33923547 @default.
- W4380078889 hasConcept C41008148 @default.
- W4380078889 hasConcept C42475967 @default.
- W4380078889 hasConcept C74448152 @default.
- W4380078889 hasConcept C9652623 @default.
- W4380078889 hasConceptScore W4380078889C108583219 @default.
- W4380078889 hasConceptScore W4380078889C127413603 @default.
- W4380078889 hasConceptScore W4380078889C146978453 @default.
- W4380078889 hasConceptScore W4380078889C153294291 @default.
- W4380078889 hasConceptScore W4380078889C154945302 @default.
- W4380078889 hasConceptScore W4380078889C193809577 @default.
- W4380078889 hasConceptScore W4380078889C202444582 @default.
- W4380078889 hasConceptScore W4380078889C205649164 @default.
- W4380078889 hasConceptScore W4380078889C2776637919 @default.
- W4380078889 hasConceptScore W4380078889C33923547 @default.
- W4380078889 hasConceptScore W4380078889C41008148 @default.
- W4380078889 hasConceptScore W4380078889C42475967 @default.
- W4380078889 hasConceptScore W4380078889C74448152 @default.
- W4380078889 hasConceptScore W4380078889C9652623 @default.
- W4380078889 hasIssue "1" @default.
- W4380078889 hasLocation W43800788891 @default.
- W4380078889 hasOpenAccess W4380078889 @default.
- W4380078889 hasPrimaryLocation W43800788891 @default.