Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380079454> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4380079454 abstract "Despite the recent introduction of such methods, the increasing interest of the scientific community has consolidated these approaches. Consequently, there are many applications of graph representation learning to model and analyze massive and multimodal biological data generated from high throughput omics technology, epidemiological data, and electronic health records. These approaches share the common idea of encoding network structure, represented as the adjacency matrix of the graph, into a latent lowdimensional space. Such methods are based on many algorithms, from matrix factorization to deep learning and complex non-linear models based on noneuclidean geometries. The relevance of these methods is the possibility to efficiently map in a low-dimensional space both topology and biology (i.e., all the available metadata for nodes and edges).We are delighted to announce the publication of a special issue on Graph Representation Learning in Biological Networks in Frontiers in Bioinformatics. This special issue aims to showcase the latest research and advancements in graph representation learning and its applications to biological networks. The issue contains high-quality manuscripts covering many different applications. The above high-quality manuscripts will significantly enrich the knowledge base of researchers already working in similar domains or the nascent research stage in graph representation learning." @default.
- W4380079454 created "2023-06-10" @default.
- W4380079454 creator A5010413185 @default.
- W4380079454 creator A5037399554 @default.
- W4380079454 creator A5049180880 @default.
- W4380079454 date "2023-06-09" @default.
- W4380079454 modified "2023-10-18" @default.
- W4380079454 title "Editorial: Graph representation learning in biological network" @default.
- W4380079454 doi "https://doi.org/10.3389/fbinf.2023.1222711" @default.
- W4380079454 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37359069" @default.
- W4380079454 hasPublicationYear "2023" @default.
- W4380079454 type Work @default.
- W4380079454 citedByCount "0" @default.
- W4380079454 crossrefType "journal-article" @default.
- W4380079454 hasAuthorship W4380079454A5010413185 @default.
- W4380079454 hasAuthorship W4380079454A5037399554 @default.
- W4380079454 hasAuthorship W4380079454A5049180880 @default.
- W4380079454 hasBestOaLocation W43800794541 @default.
- W4380079454 hasConcept C116409475 @default.
- W4380079454 hasConcept C132525143 @default.
- W4380079454 hasConcept C136764020 @default.
- W4380079454 hasConcept C154945302 @default.
- W4380079454 hasConcept C17744445 @default.
- W4380079454 hasConcept C180356752 @default.
- W4380079454 hasConcept C199539241 @default.
- W4380079454 hasConcept C201797286 @default.
- W4380079454 hasConcept C2522767166 @default.
- W4380079454 hasConcept C2776359362 @default.
- W4380079454 hasConcept C28225019 @default.
- W4380079454 hasConcept C41008148 @default.
- W4380079454 hasConcept C59404180 @default.
- W4380079454 hasConcept C60644358 @default.
- W4380079454 hasConcept C80444323 @default.
- W4380079454 hasConcept C86803240 @default.
- W4380079454 hasConcept C93518851 @default.
- W4380079454 hasConcept C94625758 @default.
- W4380079454 hasConceptScore W4380079454C116409475 @default.
- W4380079454 hasConceptScore W4380079454C132525143 @default.
- W4380079454 hasConceptScore W4380079454C136764020 @default.
- W4380079454 hasConceptScore W4380079454C154945302 @default.
- W4380079454 hasConceptScore W4380079454C17744445 @default.
- W4380079454 hasConceptScore W4380079454C180356752 @default.
- W4380079454 hasConceptScore W4380079454C199539241 @default.
- W4380079454 hasConceptScore W4380079454C201797286 @default.
- W4380079454 hasConceptScore W4380079454C2522767166 @default.
- W4380079454 hasConceptScore W4380079454C2776359362 @default.
- W4380079454 hasConceptScore W4380079454C28225019 @default.
- W4380079454 hasConceptScore W4380079454C41008148 @default.
- W4380079454 hasConceptScore W4380079454C59404180 @default.
- W4380079454 hasConceptScore W4380079454C60644358 @default.
- W4380079454 hasConceptScore W4380079454C80444323 @default.
- W4380079454 hasConceptScore W4380079454C86803240 @default.
- W4380079454 hasConceptScore W4380079454C93518851 @default.
- W4380079454 hasConceptScore W4380079454C94625758 @default.
- W4380079454 hasLocation W43800794541 @default.
- W4380079454 hasLocation W43800794542 @default.
- W4380079454 hasLocation W43800794543 @default.
- W4380079454 hasOpenAccess W4380079454 @default.
- W4380079454 hasPrimaryLocation W43800794541 @default.
- W4380079454 hasRelatedWork W17905074 @default.
- W4380079454 hasRelatedWork W1997156282 @default.
- W4380079454 hasRelatedWork W2468446668 @default.
- W4380079454 hasRelatedWork W2938696877 @default.
- W4380079454 hasRelatedWork W2946081857 @default.
- W4380079454 hasRelatedWork W3126928293 @default.
- W4380079454 hasRelatedWork W4231834319 @default.
- W4380079454 hasRelatedWork W4286796787 @default.
- W4380079454 hasRelatedWork W4288958425 @default.
- W4380079454 hasRelatedWork W4323911413 @default.
- W4380079454 hasVolume "3" @default.
- W4380079454 isParatext "false" @default.
- W4380079454 isRetracted "false" @default.
- W4380079454 workType "editorial" @default.