Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380081566> ?p ?o ?g. }
- W4380081566 abstract "AI-based clinical decision support system (CDSS) has important prospects in overcoming the current informational challenges that cancer diseases faced, promoting the homogeneous development of standardized treatment among different geographical regions, and reforming the medical model. However, there are still a lack of relevant indicators to comprehensively assess its decision-making quality and clinical impact, which greatly limits the development of its clinical research and clinical application. This study aims to develop and application an assessment system that can comprehensively assess the decision-making quality and clinical impacts of physicians and CDSS.Enrolled adjuvant treatment decision stage early breast cancer cases were randomly assigned to different decision-making physician panels (each panel consisted of three different seniority physicians in different grades hospitals), each physician made an independent Initial Decision and then reviewed the CDSS report online and made a Final Decision. In addition, the CDSS and guideline expert groups independently review all cases and generate CDSS Recommendations and Guideline Recommendations respectively. Based on the design framework, a multi-level multi-indicator system including Decision Concordance, Calibrated Concordance, Decision Concordance with High-level Physician, Consensus Rate, Decision Stability, Guideline Conformity, and Calibrated Conformity were constructed.531 cases containing 2124 decision points were enrolled; 27 different seniority physicians from 10 different grades hospitals have generated 6372 decision opinions before and after referring to the CDSS Recommendations report respectively. Overall, the calibrated decision concordance was significantly higher for CDSS and provincial-senior physicians (80.9%) than other physicians. At the same time, CDSS has a higher decision concordance with high-level physician (76.3%-91.5%) than all physicians. The CDSS had significantly higher guideline conformity than all decision-making physicians and less internal variation, with an overall guideline conformity variance of 17.5% (97.5% vs. 80.0%), a standard deviation variance of 6.6% (1.3% vs. 7.9%), and a mean difference variance of 7.8% (1.5% vs. 9.3%). In addition, provincial-middle seniority physicians had the highest decision stability (54.5%). The overall consensus rate among physicians was 64.2%.There are significant internal variation in the standardization treatment level of different seniority physicians in different geographical regions in the adjuvant treatment of early breast cancer. CDSS has a higher standardization treatment level than all physicians and has the potential to provide immediate decision support to physicians and have a positive impact on standardizing physicians' treatment behaviors." @default.
- W4380081566 created "2023-06-10" @default.
- W4380081566 creator A5002822938 @default.
- W4380081566 creator A5004221127 @default.
- W4380081566 creator A5005758197 @default.
- W4380081566 creator A5006266198 @default.
- W4380081566 creator A5010783217 @default.
- W4380081566 creator A5011216849 @default.
- W4380081566 creator A5017541431 @default.
- W4380081566 creator A5022256556 @default.
- W4380081566 creator A5023364371 @default.
- W4380081566 creator A5023770999 @default.
- W4380081566 creator A5030691366 @default.
- W4380081566 creator A5034152414 @default.
- W4380081566 creator A5034654778 @default.
- W4380081566 creator A5037248049 @default.
- W4380081566 creator A5039423489 @default.
- W4380081566 creator A5040205022 @default.
- W4380081566 creator A5041392530 @default.
- W4380081566 creator A5043490198 @default.
- W4380081566 creator A5044301848 @default.
- W4380081566 creator A5053606335 @default.
- W4380081566 creator A5055003664 @default.
- W4380081566 creator A5070463960 @default.
- W4380081566 creator A5076149259 @default.
- W4380081566 creator A5078197906 @default.
- W4380081566 creator A5084830556 @default.
- W4380081566 creator A5085456464 @default.
- W4380081566 date "2023-06-09" @default.
- W4380081566 modified "2023-09-23" @default.
- W4380081566 title "Assessing the decision quality of artificial intelligence and oncologists of different experience in different regions in breast cancer treatment" @default.
- W4380081566 cites W1997647407 @default.
- W4380081566 cites W2024607366 @default.
- W4380081566 cites W2558050786 @default.
- W4380081566 cites W2613716520 @default.
- W4380081566 cites W2783063799 @default.
- W4380081566 cites W2794660381 @default.
- W4380081566 cites W2799930623 @default.
- W4380081566 cites W2889346090 @default.
- W4380081566 cites W2889905270 @default.
- W4380081566 cites W2900313583 @default.
- W4380081566 cites W2901884034 @default.
- W4380081566 cites W2902018172 @default.
- W4380081566 cites W2924159870 @default.
- W4380081566 cites W2952377701 @default.
- W4380081566 cites W2967802428 @default.
- W4380081566 cites W2996012771 @default.
- W4380081566 cites W3004793911 @default.
- W4380081566 cites W3012230929 @default.
- W4380081566 cites W3012433518 @default.
- W4380081566 cites W3012840397 @default.
- W4380081566 cites W3013808798 @default.
- W4380081566 cites W3016938371 @default.
- W4380081566 cites W3020419065 @default.
- W4380081566 cites W3027505477 @default.
- W4380081566 cites W3038819575 @default.
- W4380081566 cites W3043890914 @default.
- W4380081566 cites W3088228894 @default.
- W4380081566 cites W3088899594 @default.
- W4380081566 cites W3089309273 @default.
- W4380081566 cites W3097878839 @default.
- W4380081566 cites W3126702715 @default.
- W4380081566 cites W3126805282 @default.
- W4380081566 cites W3128646645 @default.
- W4380081566 cites W3134687420 @default.
- W4380081566 cites W3135258216 @default.
- W4380081566 cites W3138653062 @default.
- W4380081566 cites W3152552104 @default.
- W4380081566 cites W3154126551 @default.
- W4380081566 cites W3155436984 @default.
- W4380081566 cites W3163196727 @default.
- W4380081566 cites W3175314351 @default.
- W4380081566 cites W3178519255 @default.
- W4380081566 cites W3181145433 @default.
- W4380081566 cites W3187963455 @default.
- W4380081566 cites W3189475244 @default.
- W4380081566 cites W3202357122 @default.
- W4380081566 cites W3203189213 @default.
- W4380081566 cites W3205605830 @default.
- W4380081566 cites W3213232584 @default.
- W4380081566 cites W4200111739 @default.
- W4380081566 cites W4206285699 @default.
- W4380081566 cites W4210683333 @default.
- W4380081566 doi "https://doi.org/10.3389/fonc.2023.1152013" @default.
- W4380081566 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37361565" @default.
- W4380081566 hasPublicationYear "2023" @default.
- W4380081566 type Work @default.
- W4380081566 citedByCount "0" @default.
- W4380081566 crossrefType "journal-article" @default.
- W4380081566 hasAuthorship W4380081566A5002822938 @default.
- W4380081566 hasAuthorship W4380081566A5004221127 @default.
- W4380081566 hasAuthorship W4380081566A5005758197 @default.
- W4380081566 hasAuthorship W4380081566A5006266198 @default.
- W4380081566 hasAuthorship W4380081566A5010783217 @default.
- W4380081566 hasAuthorship W4380081566A5011216849 @default.
- W4380081566 hasAuthorship W4380081566A5017541431 @default.
- W4380081566 hasAuthorship W4380081566A5022256556 @default.
- W4380081566 hasAuthorship W4380081566A5023364371 @default.
- W4380081566 hasAuthorship W4380081566A5023770999 @default.
- W4380081566 hasAuthorship W4380081566A5030691366 @default.