Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380082180> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4380082180 abstract "Intelligent traffic light control (ITLC) algorithms are very efficient for relieving traffic congestion. Recently, many decentralized multi-agent traffic light control algorithms are proposed. These researches mainly focus on improving reinforcement learning method and coordination method. But, as all the agents need to communicate while coordinating with each other, the communication details should be improved as well. To guarantee communication effectiveness, two aspect should be considered. Firstly, a traffic condition description method need to be designed. By using this method, traffic condition can be described simply and clearly. Secondly, synchronization should be considered. As different intersections have different cycle lengths and message sending event happens at the end of each traffic signal cycle, every agent will receive messages of other agents at different time. So it is hard for an agent to decide which message is the latest one and the most valuable. Apart from communication details, reinforcement learning algorithm used for traffic signal timing should also be improved. In the traditional reinforcement learning based ITLC algorithms, either queue length of congested cars or waiting time of these cars is considered while calculating reward value. But, both of them are very important. So a new reward calculation method is needed. To solve all these problems, in this paper, a new ITLC algorithm is proposed. To improve communication efficiency, this algorithm adopts a new message sending and processing method. Besides, to measure traffic congestion in a more reasonable way, a new reward calculation method is proposed and used. This method takes both waiting time and queue length into consideration." @default.
- W4380082180 created "2023-06-10" @default.
- W4380082180 creator A5003504134 @default.
- W4380082180 creator A5041823355 @default.
- W4380082180 date "2023-06-09" @default.
- W4380082180 modified "2023-09-25" @default.
- W4380082180 title "A traffic light control method based on multi-agent deep reinforcement learning algorithm" @default.
- W4380082180 cites W2020070197 @default.
- W4380082180 cites W2064774485 @default.
- W4380082180 cites W2074500080 @default.
- W4380082180 cites W2078895652 @default.
- W4380082180 cites W2082310090 @default.
- W4380082180 cites W2107726111 @default.
- W4380082180 cites W2162115371 @default.
- W4380082180 cites W2747046834 @default.
- W4380082180 cites W2898035736 @default.
- W4380082180 cites W2904065660 @default.
- W4380082180 cites W2915117209 @default.
- W4380082180 cites W2933570795 @default.
- W4380082180 cites W2956256673 @default.
- W4380082180 cites W2967474307 @default.
- W4380082180 cites W2988973041 @default.
- W4380082180 cites W2989915408 @default.
- W4380082180 cites W2998187693 @default.
- W4380082180 cites W3002430934 @default.
- W4380082180 cites W3011507876 @default.
- W4380082180 cites W3018779742 @default.
- W4380082180 cites W3030840723 @default.
- W4380082180 cites W3133129631 @default.
- W4380082180 cites W3136021864 @default.
- W4380082180 cites W3201236850 @default.
- W4380082180 cites W3205483739 @default.
- W4380082180 cites W4221155364 @default.
- W4380082180 cites W4225726009 @default.
- W4380082180 cites W4226071977 @default.
- W4380082180 cites W4320729567 @default.
- W4380082180 cites W4327576564 @default.
- W4380082180 doi "https://doi.org/10.1038/s41598-023-36606-2" @default.
- W4380082180 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37296308" @default.
- W4380082180 hasPublicationYear "2023" @default.
- W4380082180 type Work @default.
- W4380082180 citedByCount "0" @default.
- W4380082180 crossrefType "journal-article" @default.
- W4380082180 hasAuthorship W4380082180A5003504134 @default.
- W4380082180 hasAuthorship W4380082180A5041823355 @default.
- W4380082180 hasBestOaLocation W43800821801 @default.
- W4380082180 hasConcept C11413529 @default.
- W4380082180 hasConcept C120314980 @default.
- W4380082180 hasConcept C127162648 @default.
- W4380082180 hasConcept C127413603 @default.
- W4380082180 hasConcept C154945302 @default.
- W4380082180 hasConcept C160403385 @default.
- W4380082180 hasConcept C22212356 @default.
- W4380082180 hasConcept C26324664 @default.
- W4380082180 hasConcept C2775924081 @default.
- W4380082180 hasConcept C2778562939 @default.
- W4380082180 hasConcept C2779888511 @default.
- W4380082180 hasConcept C31258907 @default.
- W4380082180 hasConcept C41008148 @default.
- W4380082180 hasConcept C79403827 @default.
- W4380082180 hasConcept C97541855 @default.
- W4380082180 hasConceptScore W4380082180C11413529 @default.
- W4380082180 hasConceptScore W4380082180C120314980 @default.
- W4380082180 hasConceptScore W4380082180C127162648 @default.
- W4380082180 hasConceptScore W4380082180C127413603 @default.
- W4380082180 hasConceptScore W4380082180C154945302 @default.
- W4380082180 hasConceptScore W4380082180C160403385 @default.
- W4380082180 hasConceptScore W4380082180C22212356 @default.
- W4380082180 hasConceptScore W4380082180C26324664 @default.
- W4380082180 hasConceptScore W4380082180C2775924081 @default.
- W4380082180 hasConceptScore W4380082180C2778562939 @default.
- W4380082180 hasConceptScore W4380082180C2779888511 @default.
- W4380082180 hasConceptScore W4380082180C31258907 @default.
- W4380082180 hasConceptScore W4380082180C41008148 @default.
- W4380082180 hasConceptScore W4380082180C79403827 @default.
- W4380082180 hasConceptScore W4380082180C97541855 @default.
- W4380082180 hasFunder F4320321001 @default.
- W4380082180 hasIssue "1" @default.
- W4380082180 hasLocation W43800821801 @default.
- W4380082180 hasLocation W43800821802 @default.
- W4380082180 hasLocation W43800821803 @default.
- W4380082180 hasLocation W43800821804 @default.
- W4380082180 hasOpenAccess W4380082180 @default.
- W4380082180 hasPrimaryLocation W43800821801 @default.
- W4380082180 hasRelatedWork W2016642514 @default.
- W4380082180 hasRelatedWork W2131630752 @default.
- W4380082180 hasRelatedWork W2158032519 @default.
- W4380082180 hasRelatedWork W2339549615 @default.
- W4380082180 hasRelatedWork W2370411124 @default.
- W4380082180 hasRelatedWork W2391974425 @default.
- W4380082180 hasRelatedWork W2435238065 @default.
- W4380082180 hasRelatedWork W2916512073 @default.
- W4380082180 hasRelatedWork W2996142150 @default.
- W4380082180 hasRelatedWork W4226139383 @default.
- W4380082180 hasVolume "13" @default.
- W4380082180 isParatext "false" @default.
- W4380082180 isRetracted "false" @default.
- W4380082180 workType "article" @default.