Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380087757> ?p ?o ?g. }
- W4380087757 endingPage "106" @default.
- W4380087757 startingPage "77" @default.
- W4380087757 abstract "Human faces can reveal not just the human identity, but even demographic characteristics such as ethnicity and gender. Recently, the researchers get the advantages of Deep Learning techniques in developing face recognition systems implemented on both 2D and 3D face datasets. However, the usefulness of Deep learning in analyzing facial features of 3D faces gender, and ethnicity are examined in literature with only three main perspectives: data representation, augmentation, and comparison using the several commonly used format of 3D face representation such as depth images, point clouds, normal maps, triangular mesh, and horizontal disparity images. Many algorithms are implemented by authors on popular 3D datasets including FRGC v2, 3D-Texas, and BU3D-FE. In this work, we highlight the advantages of using the deep learning 3D representation in “race recognition” approaches and refer the researchers to the important related works in this field by comparing them according to their distinguishing metrics and invariant conditions support and the used techniques and datasets." @default.
- W4380087757 created "2023-06-10" @default.
- W4380087757 creator A5003244392 @default.
- W4380087757 creator A5092129685 @default.
- W4380087757 date "2023-01-01" @default.
- W4380087757 modified "2023-09-27" @default.
- W4380087757 title "A Comprehensive Review in Using the Advances of Deep Learning in the 3D Race Classification" @default.
- W4380087757 cites W132857017 @default.
- W4380087757 cites W1484618237 @default.
- W4380087757 cites W1566413196 @default.
- W4380087757 cites W1677409904 @default.
- W4380087757 cites W1949778830 @default.
- W4380087757 cites W1964512344 @default.
- W4380087757 cites W1968197663 @default.
- W4380087757 cites W1971988784 @default.
- W4380087757 cites W1975056068 @default.
- W4380087757 cites W1979743748 @default.
- W4380087757 cites W1981431583 @default.
- W4380087757 cites W1989188126 @default.
- W4380087757 cites W1993766142 @default.
- W4380087757 cites W2007222021 @default.
- W4380087757 cites W2008222302 @default.
- W4380087757 cites W2008932806 @default.
- W4380087757 cites W2021012145 @default.
- W4380087757 cites W2024922353 @default.
- W4380087757 cites W2027297564 @default.
- W4380087757 cites W2029600384 @default.
- W4380087757 cites W2039051707 @default.
- W4380087757 cites W2041420485 @default.
- W4380087757 cites W2055492845 @default.
- W4380087757 cites W2069508203 @default.
- W4380087757 cites W2070870580 @default.
- W4380087757 cites W2081365434 @default.
- W4380087757 cites W2084148803 @default.
- W4380087757 cites W2087007396 @default.
- W4380087757 cites W2093764961 @default.
- W4380087757 cites W2096246895 @default.
- W4380087757 cites W2097915737 @default.
- W4380087757 cites W2098947662 @default.
- W4380087757 cites W2102897151 @default.
- W4380087757 cites W2106309519 @default.
- W4380087757 cites W2109647201 @default.
- W4380087757 cites W2109729591 @default.
- W4380087757 cites W2113341759 @default.
- W4380087757 cites W2115394472 @default.
- W4380087757 cites W2120480077 @default.
- W4380087757 cites W2120954940 @default.
- W4380087757 cites W2121647436 @default.
- W4380087757 cites W2123582174 @default.
- W4380087757 cites W2130258210 @default.
- W4380087757 cites W2131081720 @default.
- W4380087757 cites W2132902651 @default.
- W4380087757 cites W2137695006 @default.
- W4380087757 cites W2138451337 @default.
- W4380087757 cites W2138931357 @default.
- W4380087757 cites W2144098027 @default.
- W4380087757 cites W2144219375 @default.
- W4380087757 cites W2146474141 @default.
- W4380087757 cites W2149244199 @default.
- W4380087757 cites W2151103935 @default.
- W4380087757 cites W2163619472 @default.
- W4380087757 cites W2169332647 @default.
- W4380087757 cites W2188817417 @default.
- W4380087757 cites W2237250383 @default.
- W4380087757 cites W2280815156 @default.
- W4380087757 cites W2395630652 @default.
- W4380087757 cites W2506506742 @default.
- W4380087757 cites W2516455388 @default.
- W4380087757 cites W2551584094 @default.
- W4380087757 cites W2581499363 @default.
- W4380087757 cites W2586392958 @default.
- W4380087757 cites W2608320614 @default.
- W4380087757 cites W2617023900 @default.
- W4380087757 cites W2624972355 @default.
- W4380087757 cites W2737897248 @default.
- W4380087757 cites W2756577788 @default.
- W4380087757 cites W2761475327 @default.
- W4380087757 cites W2765635051 @default.
- W4380087757 cites W2770880454 @default.
- W4380087757 cites W2779166865 @default.
- W4380087757 cites W2798506093 @default.
- W4380087757 cites W2885976210 @default.
- W4380087757 cites W2899292699 @default.
- W4380087757 cites W2912990735 @default.
- W4380087757 cites W2920330662 @default.
- W4380087757 cites W2950820794 @default.
- W4380087757 cites W2962898354 @default.
- W4380087757 cites W2962950337 @default.
- W4380087757 cites W2963671154 @default.
- W4380087757 cites W2969985801 @default.
- W4380087757 cites W2995228464 @default.
- W4380087757 cites W3013873750 @default.
- W4380087757 cites W3036062642 @default.
- W4380087757 cites W3043242023 @default.
- W4380087757 cites W3045714998 @default.
- W4380087757 cites W3089381292 @default.
- W4380087757 cites W3102169128 @default.
- W4380087757 cites W3106250896 @default.