Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380087812> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4380087812 endingPage "18" @default.
- W4380087812 startingPage "1" @default.
- W4380087812 abstract "Smart machine tools must be able to recognise the materials they interact with, in order to independently decide on what actions to be taken whenever needed. The purpose of this research is to offer a generic method to automate material identification and classification task utilising image processing and machine learning techniques so as to improve the cognitive capabilities of machine tools. A dataset of four material surfaces; Copper, Aluminium, Stainless Steel, and Bronze is generated and the RGB data are extracted. These colour channels are utilised as input features to train the machine learning algorithms. Convolutional Neural Network (CNN) and other classification methods like Support Vector Machine (SVM), Decision Trees, and k-Nearest Neighbour are also used to classify material images based on the generated dataset. A unique generalised technique, based on CNN, has been proposed to accurately recognise and categorise round surfaced materials during machining. The accuracy achieved by the classifier has reached 100% during training and testing. Test images are used to confirm the proposed methodology's capability to distinguish between materials based on various illumination environments and camera positions." @default.
- W4380087812 created "2023-06-10" @default.
- W4380087812 creator A5036261096 @default.
- W4380087812 creator A5077227983 @default.
- W4380087812 date "2023-06-09" @default.
- W4380087812 modified "2023-10-03" @default.
- W4380087812 title "Classification of materials in cylindrical workpieces using image processing and machine learning techniques" @default.
- W4380087812 cites W1726694533 @default.
- W4380087812 cites W1803168886 @default.
- W4380087812 cites W1988299413 @default.
- W4380087812 cites W1992043873 @default.
- W4380087812 cites W2006815543 @default.
- W4380087812 cites W2035115911 @default.
- W4380087812 cites W2049068039 @default.
- W4380087812 cites W2069857876 @default.
- W4380087812 cites W2072414870 @default.
- W4380087812 cites W2074897537 @default.
- W4380087812 cites W2107534598 @default.
- W4380087812 cites W2116995487 @default.
- W4380087812 cites W2160746645 @default.
- W4380087812 cites W2396845390 @default.
- W4380087812 cites W2432028844 @default.
- W4380087812 cites W2552248783 @default.
- W4380087812 cites W2574787443 @default.
- W4380087812 cites W2603008685 @default.
- W4380087812 cites W2773444615 @default.
- W4380087812 cites W2789564462 @default.
- W4380087812 cites W2789876780 @default.
- W4380087812 cites W2790721717 @default.
- W4380087812 cites W2796424950 @default.
- W4380087812 cites W2883175617 @default.
- W4380087812 cites W2897773852 @default.
- W4380087812 cites W2897900427 @default.
- W4380087812 cites W2903536418 @default.
- W4380087812 cites W2982564320 @default.
- W4380087812 cites W2989368580 @default.
- W4380087812 cites W3089801272 @default.
- W4380087812 cites W3128904211 @default.
- W4380087812 cites W3134150249 @default.
- W4380087812 cites W4207016755 @default.
- W4380087812 cites W4308467154 @default.
- W4380087812 doi "https://doi.org/10.1080/00207543.2023.2219344" @default.
- W4380087812 hasPublicationYear "2023" @default.
- W4380087812 type Work @default.
- W4380087812 citedByCount "0" @default.
- W4380087812 crossrefType "journal-article" @default.
- W4380087812 hasAuthorship W4380087812A5036261096 @default.
- W4380087812 hasAuthorship W4380087812A5077227983 @default.
- W4380087812 hasConcept C115961682 @default.
- W4380087812 hasConcept C119857082 @default.
- W4380087812 hasConcept C12267149 @default.
- W4380087812 hasConcept C127413603 @default.
- W4380087812 hasConcept C153180895 @default.
- W4380087812 hasConcept C154945302 @default.
- W4380087812 hasConcept C41008148 @default.
- W4380087812 hasConcept C50644808 @default.
- W4380087812 hasConcept C523214423 @default.
- W4380087812 hasConcept C5339829 @default.
- W4380087812 hasConcept C78519656 @default.
- W4380087812 hasConcept C81363708 @default.
- W4380087812 hasConcept C82990744 @default.
- W4380087812 hasConcept C9417928 @default.
- W4380087812 hasConcept C95623464 @default.
- W4380087812 hasConceptScore W4380087812C115961682 @default.
- W4380087812 hasConceptScore W4380087812C119857082 @default.
- W4380087812 hasConceptScore W4380087812C12267149 @default.
- W4380087812 hasConceptScore W4380087812C127413603 @default.
- W4380087812 hasConceptScore W4380087812C153180895 @default.
- W4380087812 hasConceptScore W4380087812C154945302 @default.
- W4380087812 hasConceptScore W4380087812C41008148 @default.
- W4380087812 hasConceptScore W4380087812C50644808 @default.
- W4380087812 hasConceptScore W4380087812C523214423 @default.
- W4380087812 hasConceptScore W4380087812C5339829 @default.
- W4380087812 hasConceptScore W4380087812C78519656 @default.
- W4380087812 hasConceptScore W4380087812C81363708 @default.
- W4380087812 hasConceptScore W4380087812C82990744 @default.
- W4380087812 hasConceptScore W4380087812C9417928 @default.
- W4380087812 hasConceptScore W4380087812C95623464 @default.
- W4380087812 hasLocation W43800878121 @default.
- W4380087812 hasOpenAccess W4380087812 @default.
- W4380087812 hasPrimaryLocation W43800878121 @default.
- W4380087812 hasRelatedWork W2041636156 @default.
- W4380087812 hasRelatedWork W2070136981 @default.
- W4380087812 hasRelatedWork W2160451891 @default.
- W4380087812 hasRelatedWork W2940661641 @default.
- W4380087812 hasRelatedWork W2964383635 @default.
- W4380087812 hasRelatedWork W2995914718 @default.
- W4380087812 hasRelatedWork W3193301557 @default.
- W4380087812 hasRelatedWork W4224108623 @default.
- W4380087812 hasRelatedWork W4242764575 @default.
- W4380087812 hasRelatedWork W564581980 @default.
- W4380087812 isParatext "false" @default.
- W4380087812 isRetracted "false" @default.
- W4380087812 workType "article" @default.