Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380087918> ?p ?o ?g. }
- W4380087918 abstract "Abstract Off-target drug interactions are a major reason for candidate failure in the drug discovery process. Anticipating potential drug’s adverse effects in the early stages is necessary to minimize health risks to patients, animal testing, and economical costs. With the constantly increasing size of virtual screening libraries, AI-driven methods can be exploited as first-tier screening tools to provide liability estimation for drug candidates. In this work we present ProfhEX, an AI-driven suite of 46 OECD-compliant machine learning models that can profile small molecules on 7 relevant liability groups: cardiovascular, central nervous system, gastrointestinal, endocrine, renal, pulmonary and immune system toxicities. Experimental affinity data was collected from public and commercial data sources. The entire chemical space comprised 289′202 activity data for a total of 210′116 unique compounds, spanning over 46 targets with dataset sizes ranging from 819 to 18896. Gradient boosting and random forest algorithms were initially employed and ensembled for the selection of a champion model. Models were validated according to the OECD principles, including robust internal (cross validation, bootstrap, y-scrambling) and external validation. Champion models achieved an average Pearson correlation coefficient of 0.84 (SD of 0.05), an R 2 determination coefficient of 0.68 (SD = 0.1) and a root mean squared error of 0.69 (SD of 0.08). All liability groups showed good hit-detection power with an average enrichment factor at 5% of 13.1 (SD of 4.5) and AUC of 0.92 (SD of 0.05). Benchmarking against already existing tools demonstrated the predictive power of ProfhEX models for large-scale liability profiling. This platform will be further expanded with the inclusion of new targets and through complementary modelling approaches, such as structure and pharmacophore-based models. ProfhEX is freely accessible at the following address: https://profhex.exscalate.eu/ ." @default.
- W4380087918 created "2023-06-10" @default.
- W4380087918 creator A5032283822 @default.
- W4380087918 creator A5046703363 @default.
- W4380087918 creator A5047549859 @default.
- W4380087918 creator A5060276392 @default.
- W4380087918 creator A5067915298 @default.
- W4380087918 creator A5074028971 @default.
- W4380087918 date "2023-06-09" @default.
- W4380087918 modified "2023-09-24" @default.
- W4380087918 title "ProfhEX: AI-based platform for small molecules liability profiling" @default.
- W4380087918 cites W1530167222 @default.
- W4380087918 cites W1678356000 @default.
- W4380087918 cites W1869829652 @default.
- W4380087918 cites W1967105697 @default.
- W4380087918 cites W1968319881 @default.
- W4380087918 cites W1979900513 @default.
- W4380087918 cites W1989797821 @default.
- W4380087918 cites W1992041755 @default.
- W4380087918 cites W2004635453 @default.
- W4380087918 cites W2018453465 @default.
- W4380087918 cites W2021714618 @default.
- W4380087918 cites W2057069496 @default.
- W4380087918 cites W2061080229 @default.
- W4380087918 cites W2070789802 @default.
- W4380087918 cites W2074681440 @default.
- W4380087918 cites W2077610956 @default.
- W4380087918 cites W2092053124 @default.
- W4380087918 cites W2094400680 @default.
- W4380087918 cites W2099071242 @default.
- W4380087918 cites W2122025333 @default.
- W4380087918 cites W213139077 @default.
- W4380087918 cites W2147670638 @default.
- W4380087918 cites W2155802578 @default.
- W4380087918 cites W2156079849 @default.
- W4380087918 cites W2206840988 @default.
- W4380087918 cites W2346292862 @default.
- W4380087918 cites W2362265365 @default.
- W4380087918 cites W2394108223 @default.
- W4380087918 cites W2402506318 @default.
- W4380087918 cites W2410227830 @default.
- W4380087918 cites W2588796969 @default.
- W4380087918 cites W2611756741 @default.
- W4380087918 cites W2740946158 @default.
- W4380087918 cites W2765502351 @default.
- W4380087918 cites W2779266190 @default.
- W4380087918 cites W2790282224 @default.
- W4380087918 cites W2806547269 @default.
- W4380087918 cites W2884740260 @default.
- W4380087918 cites W2900090807 @default.
- W4380087918 cites W2905261310 @default.
- W4380087918 cites W2909055772 @default.
- W4380087918 cites W2911964244 @default.
- W4380087918 cites W2914563121 @default.
- W4380087918 cites W2940278604 @default.
- W4380087918 cites W2947531489 @default.
- W4380087918 cites W2956229469 @default.
- W4380087918 cites W2976332861 @default.
- W4380087918 cites W2980583144 @default.
- W4380087918 cites W3004841653 @default.
- W4380087918 cites W3006781192 @default.
- W4380087918 cites W3017834715 @default.
- W4380087918 cites W3031826057 @default.
- W4380087918 cites W3040330187 @default.
- W4380087918 cites W3041306552 @default.
- W4380087918 cites W3097145107 @default.
- W4380087918 cites W3097920362 @default.
- W4380087918 cites W3112376646 @default.
- W4380087918 cites W3112951420 @default.
- W4380087918 cites W3130746194 @default.
- W4380087918 cites W3153418506 @default.
- W4380087918 cites W3171798071 @default.
- W4380087918 cites W3194368700 @default.
- W4380087918 cites W3200485832 @default.
- W4380087918 cites W3215034190 @default.
- W4380087918 cites W4220904544 @default.
- W4380087918 cites W4280627812 @default.
- W4380087918 cites W4291036516 @default.
- W4380087918 cites W63802623 @default.
- W4380087918 doi "https://doi.org/10.1186/s13321-023-00728-6" @default.
- W4380087918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37296454" @default.
- W4380087918 hasPublicationYear "2023" @default.
- W4380087918 type Work @default.
- W4380087918 citedByCount "0" @default.
- W4380087918 crossrefType "journal-article" @default.
- W4380087918 hasAuthorship W4380087918A5032283822 @default.
- W4380087918 hasAuthorship W4380087918A5046703363 @default.
- W4380087918 hasAuthorship W4380087918A5047549859 @default.
- W4380087918 hasAuthorship W4380087918A5060276392 @default.
- W4380087918 hasAuthorship W4380087918A5067915298 @default.
- W4380087918 hasAuthorship W4380087918A5074028971 @default.
- W4380087918 hasBestOaLocation W43800879181 @default.
- W4380087918 hasConcept C103697762 @default.
- W4380087918 hasConcept C119857082 @default.
- W4380087918 hasConcept C124101348 @default.
- W4380087918 hasConcept C154945302 @default.
- W4380087918 hasConcept C169258074 @default.
- W4380087918 hasConcept C17744445 @default.
- W4380087918 hasConcept C199539241 @default.
- W4380087918 hasConcept C2780465443 @default.