Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380088213> ?p ?o ?g. }
- W4380088213 abstract "Corpus callosum (CC) infarction is an extremely rare subtype of cerebral ischemic stroke, however, the symptoms of cognitive impairment often fail to attract early attention of patients, which seriously affects the long-term prognosis, such as high mortality, personality changes, mood disorders, psychotic reactions, financial burden and so on. This study seeks to develop and validate models for early predicting the risk of subjective cognitive decline (SCD) after CC infarction by machine learning (ML) algorithms.This is a prospective study that enrolled 213 (only 3.7%) CC infarction patients from a nine-year cohort comprising 8,555 patients with acute ischemic stroke. Telephone follow-up surveys were carried out for the patients with definite diagnosis of CC infarction one-year after disease onset, and SCD was identified by Behavioral Risk Factor Surveillance System (BRFSS) questionnaire. Based on the significant features selected by the least absolute shrinkage and selection operator (LASSO), seven ML models including Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Light Gradient Boosting Machine (LightGBM), Adaptive Boosting (AdaBoost), Gaussian Naïve Bayes (GNB), Complement Naïve Bayes (CNB), and Support vector machine (SVM) were established and their predictive performances were compared by different metrics. Importantly, the SHapley Additive exPlanations (SHAP) was also utilized to examine internal behavior of the highest-performance ML classifier.The Logistic Regression (LR)-model performed better than other six ML-models in SCD predictability after the CC infarction, with the area under the receiver characteristic operator curve (AUC) of 77.1% in the validation set. Using LASSO and SHAP analysis, we found that infarction subregions of CC infarction, female, 3-month modified Rankin Scale (mRS) score, age, homocysteine, location of angiostenosis, neutrophil to lymphocyte ratio, pure CC infarction, and number of angiostenosis were the top-nine significant predictors in the order of importance for the output of LR-model. Meanwhile, we identified that infarction subregion of CC, female, 3-month mRS score and pure CC infarction were the factors which independently associated with the cognitive outcome.Our study firstly demonstrated that the LR-model with 9 common variables has the best-performance to predict the risk of post-stroke SCD due to CC infarcton. Particularly, the combination of LR-model and SHAP-explainer could aid in achieving personalized risk prediction and be served as a decision-making tool for early intervention since its poor long-term outcome." @default.
- W4380088213 created "2023-06-10" @default.
- W4380088213 creator A5001263204 @default.
- W4380088213 creator A5006058880 @default.
- W4380088213 creator A5019870515 @default.
- W4380088213 creator A5020261581 @default.
- W4380088213 creator A5031287284 @default.
- W4380088213 creator A5039784240 @default.
- W4380088213 creator A5056311802 @default.
- W4380088213 creator A5063568458 @default.
- W4380088213 creator A5081479664 @default.
- W4380088213 creator A5084047711 @default.
- W4380088213 creator A5091606287 @default.
- W4380088213 date "2023-06-09" @default.
- W4380088213 modified "2023-10-15" @default.
- W4380088213 title "Prediction of subjective cognitive decline after corpus callosum infarction by an interpretable machine learning-derived early warning strategy" @default.
- W4380088213 cites W1966884128 @default.
- W4380088213 cites W1978389782 @default.
- W4380088213 cites W1978420618 @default.
- W4380088213 cites W2048505725 @default.
- W4380088213 cites W2066818405 @default.
- W4380088213 cites W2067395123 @default.
- W4380088213 cites W2087351900 @default.
- W4380088213 cites W2105486416 @default.
- W4380088213 cites W2107537187 @default.
- W4380088213 cites W2137466170 @default.
- W4380088213 cites W2138595885 @default.
- W4380088213 cites W2153633867 @default.
- W4380088213 cites W2159503988 @default.
- W4380088213 cites W2177870565 @default.
- W4380088213 cites W2210563386 @default.
- W4380088213 cites W2408942718 @default.
- W4380088213 cites W2517926962 @default.
- W4380088213 cites W2522995391 @default.
- W4380088213 cites W2551729681 @default.
- W4380088213 cites W2593974732 @default.
- W4380088213 cites W2753309007 @default.
- W4380088213 cites W2756369835 @default.
- W4380088213 cites W2771549546 @default.
- W4380088213 cites W2785983305 @default.
- W4380088213 cites W2800499234 @default.
- W4380088213 cites W2883027899 @default.
- W4380088213 cites W2886249726 @default.
- W4380088213 cites W2891128997 @default.
- W4380088213 cites W2892741787 @default.
- W4380088213 cites W2898451626 @default.
- W4380088213 cites W2908465383 @default.
- W4380088213 cites W2915012924 @default.
- W4380088213 cites W2921763762 @default.
- W4380088213 cites W2923418412 @default.
- W4380088213 cites W2967638001 @default.
- W4380088213 cites W2990158097 @default.
- W4380088213 cites W2996796194 @default.
- W4380088213 cites W3004022591 @default.
- W4380088213 cites W3015209971 @default.
- W4380088213 cites W3023085122 @default.
- W4380088213 cites W3046305373 @default.
- W4380088213 cites W3086200761 @default.
- W4380088213 cites W3087962441 @default.
- W4380088213 cites W3094628550 @default.
- W4380088213 cites W3107393033 @default.
- W4380088213 cites W3117440418 @default.
- W4380088213 cites W3120061537 @default.
- W4380088213 cites W3120097235 @default.
- W4380088213 cites W3130235815 @default.
- W4380088213 cites W3134696896 @default.
- W4380088213 cites W3159022465 @default.
- W4380088213 cites W3162368023 @default.
- W4380088213 cites W3175584866 @default.
- W4380088213 cites W3180723075 @default.
- W4380088213 cites W3200662265 @default.
- W4380088213 cites W3205629625 @default.
- W4380088213 cites W3205922226 @default.
- W4380088213 cites W3213314872 @default.
- W4380088213 cites W3214849391 @default.
- W4380088213 cites W3217489051 @default.
- W4380088213 cites W4220947435 @default.
- W4380088213 cites W4281702821 @default.
- W4380088213 cites W4307500787 @default.
- W4380088213 cites W4321090983 @default.
- W4380088213 cites W927867202 @default.
- W4380088213 doi "https://doi.org/10.3389/fneur.2023.1123607" @default.
- W4380088213 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37416313" @default.
- W4380088213 hasPublicationYear "2023" @default.
- W4380088213 type Work @default.
- W4380088213 citedByCount "0" @default.
- W4380088213 crossrefType "journal-article" @default.
- W4380088213 hasAuthorship W4380088213A5001263204 @default.
- W4380088213 hasAuthorship W4380088213A5006058880 @default.
- W4380088213 hasAuthorship W4380088213A5019870515 @default.
- W4380088213 hasAuthorship W4380088213A5020261581 @default.
- W4380088213 hasAuthorship W4380088213A5031287284 @default.
- W4380088213 hasAuthorship W4380088213A5039784240 @default.
- W4380088213 hasAuthorship W4380088213A5056311802 @default.
- W4380088213 hasAuthorship W4380088213A5063568458 @default.
- W4380088213 hasAuthorship W4380088213A5081479664 @default.
- W4380088213 hasAuthorship W4380088213A5084047711 @default.
- W4380088213 hasAuthorship W4380088213A5091606287 @default.
- W4380088213 hasBestOaLocation W43800882131 @default.
- W4380088213 hasConcept C119857082 @default.