Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380088920> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4380088920 endingPage "107832" @default.
- W4380088920 startingPage "107832" @default.
- W4380088920 abstract "Big Data is a research area where many different disciplines work together. Social media has grown in popularity as a tool for disseminating and gathering information. However, the success of social media like Twitter, Facebook, etc., has not only attracted genuine users but also spammers who utilize social graphs, famous phrases, and hashtags to spread malware. This study uses several social network analysis and visualization methods based on bibliometric data from the Web of Science to look at the structure and patterns of interdisciplinary collaborations and the latest emerging overall practice. For a better understanding of spamming behaviors on Twitter, the Twitter data set is thoroughly analyzed, and categorized into Spam and Non-Spam classifications. Earlier studies confined their scope to investigating the most negatively influential spammers by blocking the most influential spammers. However, the cumulative impact of other spammers having low individual negative influence values but higher impact values was neglected. In this article, we develop an algorithm for detecting social spam using Node Rank-based Influence Minimization (NRIM), which integrates Node Rank with the impact value of spam. The proposed spam influence minimization model also identifies spam-influential users and aids in limiting the flow of spam tweets within the Twitter network. Additionally, a detection algorithm for influential communities has been proposed to limit the spread of spam content through influential communities on the Twitter network. The primary focus of this paper is to reduce the spam impact on Twitter data by identifying influential spammers using the Node_Rank-based Influence Minimization (NRIM) algorithm. To begin, the tweets are classified into spam and non-spam using a machine learning algorithm. Furthermore, the spam observed in the Graph is analyzed, and the Spammer is passed through the NRIM algorithm to find the influential Spammers. In addition to this, the negative impact of the Spammer is reduced on the Twitter graph, and its impact is analyzed on query processing executed on Graph. The technique used for the minimization of the Spammer’s negative effect on the graph reduces the query execution time by 12%." @default.
- W4380088920 created "2023-06-10" @default.
- W4380088920 creator A5019591118 @default.
- W4380088920 creator A5027862645 @default.
- W4380088920 creator A5036495581 @default.
- W4380088920 date "2023-10-01" @default.
- W4380088920 modified "2023-09-23" @default.
- W4380088920 title "Spam community detection & influence minimization using NRIM algorithm" @default.
- W4380088920 cites W1967579779 @default.
- W4380088920 cites W2004331402 @default.
- W4380088920 cites W2054476043 @default.
- W4380088920 cites W2061820396 @default.
- W4380088920 cites W2108858998 @default.
- W4380088920 cites W2132801025 @default.
- W4380088920 cites W2141403143 @default.
- W4380088920 cites W2293575597 @default.
- W4380088920 cites W2395439732 @default.
- W4380088920 cites W2464869145 @default.
- W4380088920 cites W2493178615 @default.
- W4380088920 cites W2577959508 @default.
- W4380088920 cites W2740800979 @default.
- W4380088920 cites W2768745333 @default.
- W4380088920 cites W2775405813 @default.
- W4380088920 cites W2907028664 @default.
- W4380088920 cites W2945928904 @default.
- W4380088920 cites W2952461437 @default.
- W4380088920 cites W2968844645 @default.
- W4380088920 cites W2977886427 @default.
- W4380088920 cites W3080590497 @default.
- W4380088920 cites W3089703818 @default.
- W4380088920 cites W3099136667 @default.
- W4380088920 cites W3100751499 @default.
- W4380088920 cites W3103657871 @default.
- W4380088920 cites W3131645232 @default.
- W4380088920 cites W3177713290 @default.
- W4380088920 cites W3195107722 @default.
- W4380088920 cites W3197856886 @default.
- W4380088920 cites W4206108386 @default.
- W4380088920 cites W4213022035 @default.
- W4380088920 cites W4224033482 @default.
- W4380088920 doi "https://doi.org/10.1016/j.chb.2023.107832" @default.
- W4380088920 hasPublicationYear "2023" @default.
- W4380088920 type Work @default.
- W4380088920 citedByCount "0" @default.
- W4380088920 crossrefType "journal-article" @default.
- W4380088920 hasAuthorship W4380088920A5019591118 @default.
- W4380088920 hasAuthorship W4380088920A5027862645 @default.
- W4380088920 hasAuthorship W4380088920A5036495581 @default.
- W4380088920 hasConcept C11413529 @default.
- W4380088920 hasConcept C119857082 @default.
- W4380088920 hasConcept C136764020 @default.
- W4380088920 hasConcept C147764199 @default.
- W4380088920 hasConcept C154945302 @default.
- W4380088920 hasConcept C41008148 @default.
- W4380088920 hasConceptScore W4380088920C11413529 @default.
- W4380088920 hasConceptScore W4380088920C119857082 @default.
- W4380088920 hasConceptScore W4380088920C136764020 @default.
- W4380088920 hasConceptScore W4380088920C147764199 @default.
- W4380088920 hasConceptScore W4380088920C154945302 @default.
- W4380088920 hasConceptScore W4380088920C41008148 @default.
- W4380088920 hasLocation W43800889201 @default.
- W4380088920 hasOpenAccess W4380088920 @default.
- W4380088920 hasPrimaryLocation W43800889201 @default.
- W4380088920 hasRelatedWork W2961085424 @default.
- W4380088920 hasRelatedWork W3046775127 @default.
- W4380088920 hasRelatedWork W3170094116 @default.
- W4380088920 hasRelatedWork W3209574120 @default.
- W4380088920 hasRelatedWork W4205958290 @default.
- W4380088920 hasRelatedWork W4285260836 @default.
- W4380088920 hasRelatedWork W4286629047 @default.
- W4380088920 hasRelatedWork W4306321456 @default.
- W4380088920 hasRelatedWork W4306674287 @default.
- W4380088920 hasRelatedWork W4224009465 @default.
- W4380088920 hasVolume "147" @default.
- W4380088920 isParatext "false" @default.
- W4380088920 isRetracted "false" @default.
- W4380088920 workType "article" @default.