Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380090823> ?p ?o ?g. }
- W4380090823 abstract "Pneumonia is a life-threatening disease. Computer tomography (CT) imaging is broadly used for diagnosing pneumonia. To assist radiologists in accurately and efficiently detecting pneumonia from CT scans, many deep learning methods have been developed. These methods require large amounts of annotated CT scans, which are difficult to obtain due to privacy concerns and high annotation costs. To address this problem, we develop a three-level optimization based method which leverages CT data from a source domain to mitigate the lack of labeled CT scans in a target domain. Our method automatically identifies and downweights low-quality source CT data examples which are noisy or have large domain discrepancy with target data, by minimizing the validation loss of a target model trained on reweighted source data. On a target dataset with 2218 CT scans and a source dataset with 349 CT images, our method achieves an F1 score of 91.8% in detecting pneumonia and an F1 score of 92.4% in detecting other types of pneumonia, which are significantly better than those achieved by state-of-the-art baseline methods." @default.
- W4380090823 created "2023-06-10" @default.
- W4380090823 creator A5007454470 @default.
- W4380090823 creator A5056066703 @default.
- W4380090823 creator A5083884675 @default.
- W4380090823 date "2023-06-09" @default.
- W4380090823 modified "2023-10-16" @default.
- W4380090823 title "Improve the performance of CT-based pneumonia classification via source data reweighting" @default.
- W4380090823 cites W1526790442 @default.
- W4380090823 cites W1981658663 @default.
- W4380090823 cites W2013044826 @default.
- W4380090823 cites W2030416073 @default.
- W4380090823 cites W2064675550 @default.
- W4380090823 cites W2092012321 @default.
- W4380090823 cites W2096943734 @default.
- W4380090823 cites W2097451239 @default.
- W4380090823 cites W2115403315 @default.
- W4380090823 cites W2122156965 @default.
- W4380090823 cites W2164943005 @default.
- W4380090823 cites W2165698076 @default.
- W4380090823 cites W2194775991 @default.
- W4380090823 cites W2200000192 @default.
- W4380090823 cites W2591789009 @default.
- W4380090823 cites W2591924527 @default.
- W4380090823 cites W2739759330 @default.
- W4380090823 cites W2743522447 @default.
- W4380090823 cites W2756978580 @default.
- W4380090823 cites W2800783955 @default.
- W4380090823 cites W2952841984 @default.
- W4380090823 cites W2952989203 @default.
- W4380090823 cites W2962824366 @default.
- W4380090823 cites W2962864421 @default.
- W4380090823 cites W2963446712 @default.
- W4380090823 cites W2963498646 @default.
- W4380090823 cites W2963693396 @default.
- W4380090823 cites W2963983207 @default.
- W4380090823 cites W2964125718 @default.
- W4380090823 cites W2972413970 @default.
- W4380090823 cites W2979920800 @default.
- W4380090823 cites W3010313912 @default.
- W4380090823 cites W3015549660 @default.
- W4380090823 cites W3020653337 @default.
- W4380090823 cites W3035986928 @default.
- W4380090823 cites W3037538421 @default.
- W4380090823 cites W3038197756 @default.
- W4380090823 cites W3041133507 @default.
- W4380090823 cites W3042796256 @default.
- W4380090823 cites W3042980950 @default.
- W4380090823 cites W3092314636 @default.
- W4380090823 cites W3092433507 @default.
- W4380090823 cites W3092624683 @default.
- W4380090823 cites W3096956107 @default.
- W4380090823 cites W3117987410 @default.
- W4380090823 cites W3121870818 @default.
- W4380090823 cites W3126486492 @default.
- W4380090823 cites W3128511643 @default.
- W4380090823 cites W3135243128 @default.
- W4380090823 cites W3137710922 @default.
- W4380090823 cites W3156342878 @default.
- W4380090823 cites W3157089313 @default.
- W4380090823 cites W3157726815 @default.
- W4380090823 cites W3180562345 @default.
- W4380090823 cites W3194662286 @default.
- W4380090823 cites W3209832551 @default.
- W4380090823 cites W4200226120 @default.
- W4380090823 cites W4223565111 @default.
- W4380090823 cites W4226416231 @default.
- W4380090823 cites W4239943352 @default.
- W4380090823 cites W4281619415 @default.
- W4380090823 cites W4287181769 @default.
- W4380090823 cites W4288616731 @default.
- W4380090823 cites W4294085647 @default.
- W4380090823 cites W4312730028 @default.
- W4380090823 cites W4379660275 @default.
- W4380090823 doi "https://doi.org/10.1038/s41598-023-35938-3" @default.
- W4380090823 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37296239" @default.
- W4380090823 hasPublicationYear "2023" @default.
- W4380090823 type Work @default.
- W4380090823 citedByCount "0" @default.
- W4380090823 crossrefType "journal-article" @default.
- W4380090823 hasAuthorship W4380090823A5007454470 @default.
- W4380090823 hasAuthorship W4380090823A5056066703 @default.
- W4380090823 hasAuthorship W4380090823A5083884675 @default.
- W4380090823 hasBestOaLocation W43800908231 @default.
- W4380090823 hasConcept C119857082 @default.
- W4380090823 hasConcept C124101348 @default.
- W4380090823 hasConcept C126322002 @default.
- W4380090823 hasConcept C126838900 @default.
- W4380090823 hasConcept C134306372 @default.
- W4380090823 hasConcept C153180895 @default.
- W4380090823 hasConcept C154945302 @default.
- W4380090823 hasConcept C2776145971 @default.
- W4380090823 hasConcept C2776321320 @default.
- W4380090823 hasConcept C2777914695 @default.
- W4380090823 hasConcept C33923547 @default.
- W4380090823 hasConcept C36503486 @default.
- W4380090823 hasConcept C41008148 @default.
- W4380090823 hasConcept C544519230 @default.
- W4380090823 hasConcept C71924100 @default.
- W4380090823 hasConceptScore W4380090823C119857082 @default.