Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380091421> ?p ?o ?g. }
- W4380091421 endingPage "102608" @default.
- W4380091421 startingPage "102608" @default.
- W4380091421 abstract "Brain segmentation is often the first and most critical step in quantitative analysis of the brain for many clinical applications, including fetal imaging. Different aspects challenge the segmentation of the fetal brain in magnetic resonance imaging (MRI), such as the non-standard position of the fetus owing to his/her movements during the examination, rapid brain development, and the limited availability of imaging data. In recent years, several segmentation methods have been proposed for automatically partitioning the fetal brain from MR images. These algorithms aim to define regions of interest with different shapes and intensities, encompassing the entire brain, or isolating specific structures. Deep learning techniques, particularly convolutional neural networks (CNNs), have become a state-of-the-art approach in the field because they can provide reliable segmentation results over heterogeneous datasets. Here, we review the deep learning algorithms developed in the field of fetal brain segmentation and categorize them according to their target structures. Finally, we discuss the perceived research gaps in the literature of the fetal domain, suggesting possible future research directions that could impact the management of fetal MR images." @default.
- W4380091421 created "2023-06-10" @default.
- W4380091421 creator A5006570879 @default.
- W4380091421 creator A5009559566 @default.
- W4380091421 creator A5017648176 @default.
- W4380091421 creator A5038023333 @default.
- W4380091421 creator A5046119538 @default.
- W4380091421 creator A5064520148 @default.
- W4380091421 date "2023-09-01" @default.
- W4380091421 modified "2023-10-18" @default.
- W4380091421 title "Review on deep learning fetal brain segmentation from Magnetic Resonance images" @default.
- W4380091421 cites W1891734390 @default.
- W4380091421 cites W1935694390 @default.
- W4380091421 cites W1963037062 @default.
- W4380091421 cites W1979393293 @default.
- W4380091421 cites W1992998173 @default.
- W4380091421 cites W2019230260 @default.
- W4380091421 cites W2024251722 @default.
- W4380091421 cites W2046142779 @default.
- W4380091421 cites W2052428745 @default.
- W4380091421 cites W2052636623 @default.
- W4380091421 cites W2116895317 @default.
- W4380091421 cites W2117340355 @default.
- W4380091421 cites W2124351162 @default.
- W4380091421 cites W2129259959 @default.
- W4380091421 cites W2135264048 @default.
- W4380091421 cites W2147800946 @default.
- W4380091421 cites W2156010062 @default.
- W4380091421 cites W2156875969 @default.
- W4380091421 cites W2167343814 @default.
- W4380091421 cites W2301358467 @default.
- W4380091421 cites W2395611524 @default.
- W4380091421 cites W2396622801 @default.
- W4380091421 cites W2537611112 @default.
- W4380091421 cites W2561093012 @default.
- W4380091421 cites W2594602134 @default.
- W4380091421 cites W2600904149 @default.
- W4380091421 cites W2605766009 @default.
- W4380091421 cites W2618530766 @default.
- W4380091421 cites W2729876886 @default.
- W4380091421 cites W2732931556 @default.
- W4380091421 cites W2733375200 @default.
- W4380091421 cites W2763160469 @default.
- W4380091421 cites W2791142503 @default.
- W4380091421 cites W2791680898 @default.
- W4380091421 cites W2886934227 @default.
- W4380091421 cites W2888358068 @default.
- W4380091421 cites W2898140018 @default.
- W4380091421 cites W2905338897 @default.
- W4380091421 cites W2919115771 @default.
- W4380091421 cites W2934979562 @default.
- W4380091421 cites W2949461491 @default.
- W4380091421 cites W2981305238 @default.
- W4380091421 cites W2982780848 @default.
- W4380091421 cites W2989249732 @default.
- W4380091421 cites W2998129024 @default.
- W4380091421 cites W3096812112 @default.
- W4380091421 cites W3100262678 @default.
- W4380091421 cites W3101639073 @default.
- W4380091421 cites W3104258355 @default.
- W4380091421 cites W3107458925 @default.
- W4380091421 cites W3112701542 @default.
- W4380091421 cites W3115552777 @default.
- W4380091421 cites W3116820900 @default.
- W4380091421 cites W3138206198 @default.
- W4380091421 cites W3157453674 @default.
- W4380091421 cites W3164909817 @default.
- W4380091421 cites W3167134271 @default.
- W4380091421 cites W3177468972 @default.
- W4380091421 cites W3182781195 @default.
- W4380091421 cites W3204723588 @default.
- W4380091421 cites W4212775495 @default.
- W4380091421 cites W4225749838 @default.
- W4380091421 cites W4281621674 @default.
- W4380091421 cites W4281778627 @default.
- W4380091421 cites W4285097303 @default.
- W4380091421 cites W4285606013 @default.
- W4380091421 cites W4295015080 @default.
- W4380091421 cites W4295762988 @default.
- W4380091421 cites W4309635276 @default.
- W4380091421 cites W4313479982 @default.
- W4380091421 cites W4313646596 @default.
- W4380091421 cites W4366753223 @default.
- W4380091421 doi "https://doi.org/10.1016/j.artmed.2023.102608" @default.
- W4380091421 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37673558" @default.
- W4380091421 hasPublicationYear "2023" @default.
- W4380091421 type Work @default.
- W4380091421 citedByCount "0" @default.
- W4380091421 crossrefType "journal-article" @default.
- W4380091421 hasAuthorship W4380091421A5006570879 @default.
- W4380091421 hasAuthorship W4380091421A5009559566 @default.
- W4380091421 hasAuthorship W4380091421A5017648176 @default.
- W4380091421 hasAuthorship W4380091421A5038023333 @default.
- W4380091421 hasAuthorship W4380091421A5046119538 @default.
- W4380091421 hasAuthorship W4380091421A5064520148 @default.
- W4380091421 hasBestOaLocation W43800914211 @default.
- W4380091421 hasConcept C108583219 @default.
- W4380091421 hasConcept C119857082 @default.