Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380135897> ?p ?o ?g. }
- W4380135897 endingPage "129693" @default.
- W4380135897 startingPage "129693" @default.
- W4380135897 abstract "Climate change impact studies commonly use impact models (such as hydrological or crop models) forced with corrected climate input data from global climate models. A range of downscaling and bias correction methods have been developed to increase the spatial resolution and remove systematic biases in climate model outputs to be applied before use in impact models. Many studies have focused on evaluating such approaches for the climate variables they aim to correct. However, due to nonlinear error propagation there can be large remaining biases in model outputs, even when ingesting bias corrected climate forcings. Here we propose an impact-centric evaluation framework for downscaling and bias correction methods to be used in climate change risk assessments. This framework evaluates and compares the strengths and limitations of downscaling and bias correction in the impact domain, highlighting approaches that lead to reduced biases in impact variables of interest. We demonstrate the evaluation framework in the context of assessing downscaling and bias correction methods for hydrological projections in Australia. Our results show that although all downscaling and bias correction methods evaluated perform adequately for the input climate variables, their errors vary markedly when the impact is modelled. Our proposed evaluation framework involves selecting a number of key performance metrics, and ranking the four downscaling and bias correction methods to compute an overall ranking, highlighting the best-performing methods for each statistical metric and the overall best-performing approach. We present an application of this approach using performance metrics relevant to hydrological applications, relating to mean biases, variability, heavy precipitation and peak runoff days, and dry conditions. For impact studies related to hydrological applications, we find that multi-variate bias correction that considers cross-correlations, temporal auto-correlations and biases at multiple time scales (daily to annual) performs best in reducing biases in hydrological output variables for Australia. Our proposed evaluation approach can be applied to a wide range of climate change applications where downscaling and bias correction are required, including impacts on agricultural production, wildfires, energy generation, human health, ecosystem functioning, and water resource management." @default.
- W4380135897 created "2023-06-10" @default.
- W4380135897 creator A5004664413 @default.
- W4380135897 creator A5011403405 @default.
- W4380135897 creator A5021390672 @default.
- W4380135897 creator A5025618476 @default.
- W4380135897 creator A5028698392 @default.
- W4380135897 creator A5031982895 @default.
- W4380135897 creator A5051802673 @default.
- W4380135897 creator A5053383515 @default.
- W4380135897 creator A5059324158 @default.
- W4380135897 creator A5062170511 @default.
- W4380135897 creator A5066971635 @default.
- W4380135897 creator A5071407343 @default.
- W4380135897 creator A5073443462 @default.
- W4380135897 creator A5078242948 @default.
- W4380135897 creator A5078329198 @default.
- W4380135897 creator A5079294462 @default.
- W4380135897 creator A5082731861 @default.
- W4380135897 creator A5083381371 @default.
- W4380135897 creator A5088755520 @default.
- W4380135897 creator A5091127684 @default.
- W4380135897 date "2023-07-01" @default.
- W4380135897 modified "2023-10-06" @default.
- W4380135897 title "An evaluation framework for downscaling and bias correction in climate change impact studies" @default.
- W4380135897 cites W1226994850 @default.
- W4380135897 cites W1508836477 @default.
- W4380135897 cites W174598607 @default.
- W4380135897 cites W1963843767 @default.
- W4380135897 cites W1965731662 @default.
- W4380135897 cites W1969312858 @default.
- W4380135897 cites W1973004857 @default.
- W4380135897 cites W1999783660 @default.
- W4380135897 cites W2001783620 @default.
- W4380135897 cites W2006750690 @default.
- W4380135897 cites W2017559255 @default.
- W4380135897 cites W2024966118 @default.
- W4380135897 cites W2027219405 @default.
- W4380135897 cites W2030223774 @default.
- W4380135897 cites W2031520219 @default.
- W4380135897 cites W2050750306 @default.
- W4380135897 cites W2061857023 @default.
- W4380135897 cites W2074265780 @default.
- W4380135897 cites W2075112338 @default.
- W4380135897 cites W2079000795 @default.
- W4380135897 cites W2110060010 @default.
- W4380135897 cites W2110669521 @default.
- W4380135897 cites W2115390542 @default.
- W4380135897 cites W2132893580 @default.
- W4380135897 cites W2150014087 @default.
- W4380135897 cites W2150285422 @default.
- W4380135897 cites W2150809616 @default.
- W4380135897 cites W2154836439 @default.
- W4380135897 cites W2166535858 @default.
- W4380135897 cites W2193503481 @default.
- W4380135897 cites W2292127288 @default.
- W4380135897 cites W2296867860 @default.
- W4380135897 cites W2521425865 @default.
- W4380135897 cites W2528017898 @default.
- W4380135897 cites W2533224256 @default.
- W4380135897 cites W2537682884 @default.
- W4380135897 cites W2570798744 @default.
- W4380135897 cites W2589530245 @default.
- W4380135897 cites W2590800909 @default.
- W4380135897 cites W2591507940 @default.
- W4380135897 cites W2793981022 @default.
- W4380135897 cites W2886162457 @default.
- W4380135897 cites W2888502159 @default.
- W4380135897 cites W2890744580 @default.
- W4380135897 cites W2894713260 @default.
- W4380135897 cites W2966305488 @default.
- W4380135897 cites W3000355687 @default.
- W4380135897 cites W3003323122 @default.
- W4380135897 cites W3015793138 @default.
- W4380135897 cites W3019854559 @default.
- W4380135897 cites W3022643510 @default.
- W4380135897 cites W3041565110 @default.
- W4380135897 cites W3064323177 @default.
- W4380135897 cites W3111067656 @default.
- W4380135897 cites W3115269366 @default.
- W4380135897 cites W3121653628 @default.
- W4380135897 cites W3164020146 @default.
- W4380135897 cites W3177399579 @default.
- W4380135897 cites W39950729 @default.
- W4380135897 cites W4221094956 @default.
- W4380135897 doi "https://doi.org/10.1016/j.jhydrol.2023.129693" @default.
- W4380135897 hasPublicationYear "2023" @default.
- W4380135897 type Work @default.
- W4380135897 citedByCount "1" @default.
- W4380135897 countsByYear W43801358972023 @default.
- W4380135897 crossrefType "journal-article" @default.
- W4380135897 hasAuthorship W4380135897A5004664413 @default.
- W4380135897 hasAuthorship W4380135897A5011403405 @default.
- W4380135897 hasAuthorship W4380135897A5021390672 @default.
- W4380135897 hasAuthorship W4380135897A5025618476 @default.
- W4380135897 hasAuthorship W4380135897A5028698392 @default.
- W4380135897 hasAuthorship W4380135897A5031982895 @default.
- W4380135897 hasAuthorship W4380135897A5051802673 @default.