Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380136659> ?p ?o ?g. }
- W4380136659 abstract "Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, NLP based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely-used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction." @default.
- W4380136659 created "2023-06-10" @default.
- W4380136659 creator A5000609872 @default.
- W4380136659 creator A5006971620 @default.
- W4380136659 creator A5018967209 @default.
- W4380136659 creator A5022821909 @default.
- W4380136659 creator A5027286013 @default.
- W4380136659 creator A5027937292 @default.
- W4380136659 creator A5034581482 @default.
- W4380136659 creator A5036357902 @default.
- W4380136659 creator A5048219656 @default.
- W4380136659 creator A5048391870 @default.
- W4380136659 creator A5078949281 @default.
- W4380136659 creator A5083809384 @default.
- W4380136659 date "2023-07-01" @default.
- W4380136659 modified "2023-10-18" @default.
- W4380136659 title "Comprehensive evaluation of deep and graph learning on drug–drug interactions prediction" @default.
- W4380136659 cites W1975147762 @default.
- W4380136659 cites W2036291018 @default.
- W4380136659 cites W2054768549 @default.
- W4380136659 cites W2090891622 @default.
- W4380136659 cites W2091439417 @default.
- W4380136659 cites W2106417713 @default.
- W4380136659 cites W2117397379 @default.
- W4380136659 cites W2119002393 @default.
- W4380136659 cites W2120317715 @default.
- W4380136659 cites W2135037015 @default.
- W4380136659 cites W2145578524 @default.
- W4380136659 cites W2158299492 @default.
- W4380136659 cites W2200548835 @default.
- W4380136659 cites W2393319904 @default.
- W4380136659 cites W2515027347 @default.
- W4380136659 cites W2531708927 @default.
- W4380136659 cites W2589489260 @default.
- W4380136659 cites W2605325415 @default.
- W4380136659 cites W2607500032 @default.
- W4380136659 cites W2608081584 @default.
- W4380136659 cites W2749279690 @default.
- W4380136659 cites W2767891136 @default.
- W4380136659 cites W2777416523 @default.
- W4380136659 cites W2786016794 @default.
- W4380136659 cites W2789789321 @default.
- W4380136659 cites W2802200505 @default.
- W4380136659 cites W2911489562 @default.
- W4380136659 cites W2945027804 @default.
- W4380136659 cites W2946099214 @default.
- W4380136659 cites W2946438679 @default.
- W4380136659 cites W2949311246 @default.
- W4380136659 cites W2962756421 @default.
- W4380136659 cites W2965857891 @default.
- W4380136659 cites W2965993245 @default.
- W4380136659 cites W2972370735 @default.
- W4380136659 cites W2972392269 @default.
- W4380136659 cites W2975498843 @default.
- W4380136659 cites W2977707586 @default.
- W4380136659 cites W2987479113 @default.
- W4380136659 cites W2992752586 @default.
- W4380136659 cites W2995481601 @default.
- W4380136659 cites W2998571806 @default.
- W4380136659 cites W3003265726 @default.
- W4380136659 cites W3018980093 @default.
- W4380136659 cites W3020759564 @default.
- W4380136659 cites W3022228001 @default.
- W4380136659 cites W3024894285 @default.
- W4380136659 cites W3047785621 @default.
- W4380136659 cites W3048788615 @default.
- W4380136659 cites W3087406311 @default.
- W4380136659 cites W3088646411 @default.
- W4380136659 cites W3089843526 @default.
- W4380136659 cites W3093988619 @default.
- W4380136659 cites W3095775920 @default.
- W4380136659 cites W3102245839 @default.
- W4380136659 cites W3104097132 @default.
- W4380136659 cites W3105705953 @default.
- W4380136659 cites W3106439716 @default.
- W4380136659 cites W3108458441 @default.
- W4380136659 cites W3116099552 @default.
- W4380136659 cites W3132689447 @default.
- W4380136659 cites W3135761017 @default.
- W4380136659 cites W3139253280 @default.
- W4380136659 cites W3154258817 @default.
- W4380136659 cites W3157889929 @default.
- W4380136659 cites W3177828909 @default.
- W4380136659 cites W3179358925 @default.
- W4380136659 cites W3198755792 @default.
- W4380136659 cites W3204360269 @default.
- W4380136659 cites W3205082786 @default.
- W4380136659 cites W3205207815 @default.
- W4380136659 cites W3207365242 @default.
- W4380136659 cites W3208102118 @default.
- W4380136659 cites W3209056694 @default.
- W4380136659 cites W3213715512 @default.
- W4380136659 cites W4200042293 @default.
- W4380136659 cites W4200227922 @default.
- W4380136659 cites W4205463297 @default.
- W4380136659 cites W4213077304 @default.
- W4380136659 cites W4214621766 @default.
- W4380136659 cites W4214868967 @default.
- W4380136659 cites W4214932602 @default.
- W4380136659 cites W4220655797 @default.