Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380136769> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4380136769 abstract "Cardiac digital twins provide a physics and physiology informed framework to deliver predictive and personalized medicine. However, high-fidelity multi-scale cardiac models remain a barrier to adoption due to their extensive computational costs and the high number of model evaluations needed for patient-specific personalization. Artificial Intelligence-based methods can make the creation of fast and accurate whole-heart digital twins feasible. In this work, we use Latent Neural Ordinary Differential Equations (LNODEs) to learn the temporal pressure-volume dynamics of a heart failure patient. Our surrogate model based on LNODEs is trained from 400 3D-0D whole-heart closed-loop electromechanical simulations while accounting for 43 model parameters, describing single cell through to whole organ and cardiovascular hemodynamics. The trained LNODEs provides a compact and efficient representation of the 3D-0D model in a latent space by means of a feedforward fully-connected Artificial Neural Network that retains 3 hidden layers with 13 neurons per layer and allows for 300x real-time numerical simulations of the cardiac function on a single processor of a standard laptop. This surrogate model is employed to perform global sensitivity analysis and robust parameter estimation with uncertainty quantification in 3 hours of computations, still on a single processor. We match pressure and volume time traces unseen by the LNODEs during the training phase and we calibrate 4 to 11 model parameters while also providing their posterior distribution. This paper introduces the most advanced surrogate model of cardiac function available in the literature and opens new important venues for parameter calibration in cardiac digital twins." @default.
- W4380136769 created "2023-06-10" @default.
- W4380136769 creator A5000435552 @default.
- W4380136769 creator A5001602916 @default.
- W4380136769 creator A5013754088 @default.
- W4380136769 creator A5034191028 @default.
- W4380136769 creator A5049456178 @default.
- W4380136769 creator A5087422858 @default.
- W4380136769 date "2023-06-08" @default.
- W4380136769 modified "2023-10-13" @default.
- W4380136769 title "Real-time whole-heart electromechanical simulations using Latent Neural Ordinary Differential Equations" @default.
- W4380136769 doi "https://doi.org/10.48550/arxiv.2306.05321" @default.
- W4380136769 hasPublicationYear "2023" @default.
- W4380136769 type Work @default.
- W4380136769 citedByCount "0" @default.
- W4380136769 crossrefType "posted-content" @default.
- W4380136769 hasAuthorship W4380136769A5000435552 @default.
- W4380136769 hasAuthorship W4380136769A5001602916 @default.
- W4380136769 hasAuthorship W4380136769A5013754088 @default.
- W4380136769 hasAuthorship W4380136769A5034191028 @default.
- W4380136769 hasAuthorship W4380136769A5049456178 @default.
- W4380136769 hasAuthorship W4380136769A5087422858 @default.
- W4380136769 hasBestOaLocation W43801367691 @default.
- W4380136769 hasConcept C11413529 @default.
- W4380136769 hasConcept C119857082 @default.
- W4380136769 hasConcept C131675550 @default.
- W4380136769 hasConcept C133512626 @default.
- W4380136769 hasConcept C134306372 @default.
- W4380136769 hasConcept C154945302 @default.
- W4380136769 hasConcept C28826006 @default.
- W4380136769 hasConcept C33923547 @default.
- W4380136769 hasConcept C34862557 @default.
- W4380136769 hasConcept C41008148 @default.
- W4380136769 hasConcept C45374587 @default.
- W4380136769 hasConcept C50644808 @default.
- W4380136769 hasConcept C51544822 @default.
- W4380136769 hasConcept C78045399 @default.
- W4380136769 hasConceptScore W4380136769C11413529 @default.
- W4380136769 hasConceptScore W4380136769C119857082 @default.
- W4380136769 hasConceptScore W4380136769C131675550 @default.
- W4380136769 hasConceptScore W4380136769C133512626 @default.
- W4380136769 hasConceptScore W4380136769C134306372 @default.
- W4380136769 hasConceptScore W4380136769C154945302 @default.
- W4380136769 hasConceptScore W4380136769C28826006 @default.
- W4380136769 hasConceptScore W4380136769C33923547 @default.
- W4380136769 hasConceptScore W4380136769C34862557 @default.
- W4380136769 hasConceptScore W4380136769C41008148 @default.
- W4380136769 hasConceptScore W4380136769C45374587 @default.
- W4380136769 hasConceptScore W4380136769C50644808 @default.
- W4380136769 hasConceptScore W4380136769C51544822 @default.
- W4380136769 hasConceptScore W4380136769C78045399 @default.
- W4380136769 hasLocation W43801367691 @default.
- W4380136769 hasOpenAccess W4380136769 @default.
- W4380136769 hasPrimaryLocation W43801367691 @default.
- W4380136769 hasRelatedWork W2064808051 @default.
- W4380136769 hasRelatedWork W2084683781 @default.
- W4380136769 hasRelatedWork W2163849031 @default.
- W4380136769 hasRelatedWork W2591056316 @default.
- W4380136769 hasRelatedWork W2810270255 @default.
- W4380136769 hasRelatedWork W4225307033 @default.
- W4380136769 hasRelatedWork W4226129964 @default.
- W4380136769 hasRelatedWork W4320521253 @default.
- W4380136769 hasRelatedWork W4362579742 @default.
- W4380136769 hasRelatedWork W4379539414 @default.
- W4380136769 isParatext "false" @default.
- W4380136769 isRetracted "false" @default.
- W4380136769 workType "article" @default.