Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380143013> ?p ?o ?g. }
- W4380143013 endingPage "56224" @default.
- W4380143013 startingPage "56214" @default.
- W4380143013 abstract "Heart failure is a chronic disease affecting millions worldwide. An efficient machine learning-based technique is needed to predict heart failure health status early and take necessary actions to overcome this worldwide issue. While medication is the primary treatment, exercise is increasingly recognized as an effective adjunct therapy in managing heart failure. In this study, we developed an approach to enhance heart failure detection based on patient health parameter data involving machine learning. Our study helps improve heart failure detection at its early stages to save patients’ lives. We employed nine machine learning-based algorithms for comparison and proposed a novel Principal Component Heart Failure (PCHF) feature engineering technique to select the most prominent features to enhance performance. We optimized the proposed PCHF mechanism by creating a new feature set as an innovation to achieve the highest accuracy scores. The newly created dataset is based on the eight best-fit features. We conducted extensive experiments to assess the efficiency of several algorithms. The proposed decision tree method outperformed the applied machine learning models and other state-of-the-art studies, achieving a high accuracy score of 100%, which is admirable. All applied methods were successfully validated using the cross-validation technique. Our proposed research study has significant scientific contributions to the medical community." @default.
- W4380143013 created "2023-06-10" @default.
- W4380143013 creator A5039561400 @default.
- W4380143013 creator A5050698984 @default.
- W4380143013 creator A5085489082 @default.
- W4380143013 creator A5092131029 @default.
- W4380143013 date "2023-01-01" @default.
- W4380143013 modified "2023-09-25" @default.
- W4380143013 title "Effective Feature Engineering Technique for Heart Disease Prediction With Machine Learning" @default.
- W4380143013 cites W2097686533 @default.
- W4380143013 cites W2610602137 @default.
- W4380143013 cites W2638984638 @default.
- W4380143013 cites W2768861360 @default.
- W4380143013 cites W2802506731 @default.
- W4380143013 cites W2913705661 @default.
- W4380143013 cites W2921518958 @default.
- W4380143013 cites W2954507261 @default.
- W4380143013 cites W2997981891 @default.
- W4380143013 cites W3015231783 @default.
- W4380143013 cites W3018828627 @default.
- W4380143013 cites W3028860567 @default.
- W4380143013 cites W3044482460 @default.
- W4380143013 cites W3046918297 @default.
- W4380143013 cites W3047051048 @default.
- W4380143013 cites W3082624441 @default.
- W4380143013 cites W3099560096 @default.
- W4380143013 cites W3110975658 @default.
- W4380143013 cites W3121644786 @default.
- W4380143013 cites W3157429491 @default.
- W4380143013 cites W3177781640 @default.
- W4380143013 cites W3185516026 @default.
- W4380143013 cites W3190188467 @default.
- W4380143013 cites W3199944191 @default.
- W4380143013 cites W3203673826 @default.
- W4380143013 cites W3205149422 @default.
- W4380143013 cites W4210835248 @default.
- W4380143013 cites W4210986977 @default.
- W4380143013 cites W4214574268 @default.
- W4380143013 cites W4220812402 @default.
- W4380143013 cites W4252609774 @default.
- W4380143013 cites W4280619808 @default.
- W4380143013 cites W4283460770 @default.
- W4380143013 cites W4297238324 @default.
- W4380143013 cites W4298029535 @default.
- W4380143013 cites W4308648934 @default.
- W4380143013 cites W4323042574 @default.
- W4380143013 doi "https://doi.org/10.1109/access.2023.3281484" @default.
- W4380143013 hasPublicationYear "2023" @default.
- W4380143013 type Work @default.
- W4380143013 citedByCount "0" @default.
- W4380143013 crossrefType "journal-article" @default.
- W4380143013 hasAuthorship W4380143013A5039561400 @default.
- W4380143013 hasAuthorship W4380143013A5050698984 @default.
- W4380143013 hasAuthorship W4380143013A5085489082 @default.
- W4380143013 hasAuthorship W4380143013A5092131029 @default.
- W4380143013 hasBestOaLocation W43801430131 @default.
- W4380143013 hasConcept C108583219 @default.
- W4380143013 hasConcept C119857082 @default.
- W4380143013 hasConcept C124101348 @default.
- W4380143013 hasConcept C126322002 @default.
- W4380143013 hasConcept C138885662 @default.
- W4380143013 hasConcept C154945302 @default.
- W4380143013 hasConcept C164705383 @default.
- W4380143013 hasConcept C2776401178 @default.
- W4380143013 hasConcept C2778198053 @default.
- W4380143013 hasConcept C2778827112 @default.
- W4380143013 hasConcept C2780074459 @default.
- W4380143013 hasConcept C41008148 @default.
- W4380143013 hasConcept C41895202 @default.
- W4380143013 hasConcept C71924100 @default.
- W4380143013 hasConcept C84525736 @default.
- W4380143013 hasConceptScore W4380143013C108583219 @default.
- W4380143013 hasConceptScore W4380143013C119857082 @default.
- W4380143013 hasConceptScore W4380143013C124101348 @default.
- W4380143013 hasConceptScore W4380143013C126322002 @default.
- W4380143013 hasConceptScore W4380143013C138885662 @default.
- W4380143013 hasConceptScore W4380143013C154945302 @default.
- W4380143013 hasConceptScore W4380143013C164705383 @default.
- W4380143013 hasConceptScore W4380143013C2776401178 @default.
- W4380143013 hasConceptScore W4380143013C2778198053 @default.
- W4380143013 hasConceptScore W4380143013C2778827112 @default.
- W4380143013 hasConceptScore W4380143013C2780074459 @default.
- W4380143013 hasConceptScore W4380143013C41008148 @default.
- W4380143013 hasConceptScore W4380143013C41895202 @default.
- W4380143013 hasConceptScore W4380143013C71924100 @default.
- W4380143013 hasConceptScore W4380143013C84525736 @default.
- W4380143013 hasFunder F4320317414 @default.
- W4380143013 hasLocation W43801430131 @default.
- W4380143013 hasOpenAccess W4380143013 @default.
- W4380143013 hasPrimaryLocation W43801430131 @default.
- W4380143013 hasRelatedWork W1470425429 @default.
- W4380143013 hasRelatedWork W3200719183 @default.
- W4380143013 hasRelatedWork W3204641204 @default.
- W4380143013 hasRelatedWork W4200196661 @default.
- W4380143013 hasRelatedWork W4205958290 @default.
- W4380143013 hasRelatedWork W4249746146 @default.
- W4380143013 hasRelatedWork W4283016678 @default.
- W4380143013 hasRelatedWork W4306321456 @default.