Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380148130> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4380148130 endingPage "396" @default.
- W4380148130 startingPage "386" @default.
- W4380148130 abstract "In this fourth industrial revolution era, cyber-attacks are constantly increasing. A method called network traffic monitoring blueprint has been used to detect these unusual suspicious activities in the system. Fuzzers, Backdoors, DoS, Exploits, Reconnaissance, Shellcode, Worm, etc., are known as attacks that disrupt the functioning of a system. This paper explores the performance of various machine learning (ML) algorithms and develops an ensemble-based model to detect cyber-attacks. We first implement eight different machine learning models such as Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), Logistic Regression (LR), K-Nearest Neighbor (KNN), Decision Tree (DT), AdaBoosting, Random Forest (RF), Naive Bayes by using network intrusion dataset named UNSW-NB15 containing multi-type data. Based on the performance of indiviaul machine learning models, we construct an ensemble model by taking into account the top four machine learning models. We also take into account a set of optimal features while building our ensemble model. The experimental outcomes demonstrate that our presented ensemble model produces good accuracy of 98.48% while detecting diverse attacks." @default.
- W4380148130 created "2023-06-11" @default.
- W4380148130 creator A5005355183 @default.
- W4380148130 creator A5017884959 @default.
- W4380148130 creator A5044481298 @default.
- W4380148130 creator A5055312229 @default.
- W4380148130 date "2023-01-01" @default.
- W4380148130 modified "2023-09-26" @default.
- W4380148130 title "Cyber-Attack Detection Through Ensemble-Based Machine Learning Classifier" @default.
- W4380148130 cites W1561150890 @default.
- W4380148130 cites W1584308190 @default.
- W4380148130 cites W1993426957 @default.
- W4380148130 cites W2009927598 @default.
- W4380148130 cites W2030553727 @default.
- W4380148130 cites W2034065435 @default.
- W4380148130 cites W2100200066 @default.
- W4380148130 cites W2136132422 @default.
- W4380148130 cites W2140494000 @default.
- W4380148130 cites W2159002562 @default.
- W4380148130 cites W2266293701 @default.
- W4380148130 cites W2296509296 @default.
- W4380148130 cites W2506743715 @default.
- W4380148130 cites W2600328926 @default.
- W4380148130 cites W2783796368 @default.
- W4380148130 cites W2797915143 @default.
- W4380148130 cites W2888896868 @default.
- W4380148130 cites W2911964244 @default.
- W4380148130 cites W2945594226 @default.
- W4380148130 cites W3043486047 @default.
- W4380148130 cites W3102476541 @default.
- W4380148130 cites W3129057775 @default.
- W4380148130 cites W3143381390 @default.
- W4380148130 cites W3146778731 @default.
- W4380148130 cites W3148181069 @default.
- W4380148130 cites W4220685868 @default.
- W4380148130 cites W4224244268 @default.
- W4380148130 cites W4296349030 @default.
- W4380148130 doi "https://doi.org/10.1007/978-3-031-34622-4_31" @default.
- W4380148130 hasPublicationYear "2023" @default.
- W4380148130 type Work @default.
- W4380148130 citedByCount "0" @default.
- W4380148130 crossrefType "book-chapter" @default.
- W4380148130 hasAuthorship W4380148130A5005355183 @default.
- W4380148130 hasAuthorship W4380148130A5017884959 @default.
- W4380148130 hasAuthorship W4380148130A5044481298 @default.
- W4380148130 hasAuthorship W4380148130A5055312229 @default.
- W4380148130 hasConcept C119857082 @default.
- W4380148130 hasConcept C119898033 @default.
- W4380148130 hasConcept C12267149 @default.
- W4380148130 hasConcept C154945302 @default.
- W4380148130 hasConcept C165696696 @default.
- W4380148130 hasConcept C169258074 @default.
- W4380148130 hasConcept C35525427 @default.
- W4380148130 hasConcept C38652104 @default.
- W4380148130 hasConcept C41008148 @default.
- W4380148130 hasConcept C45942800 @default.
- W4380148130 hasConcept C52001869 @default.
- W4380148130 hasConcept C70153297 @default.
- W4380148130 hasConcept C84525736 @default.
- W4380148130 hasConcept C95623464 @default.
- W4380148130 hasConceptScore W4380148130C119857082 @default.
- W4380148130 hasConceptScore W4380148130C119898033 @default.
- W4380148130 hasConceptScore W4380148130C12267149 @default.
- W4380148130 hasConceptScore W4380148130C154945302 @default.
- W4380148130 hasConceptScore W4380148130C165696696 @default.
- W4380148130 hasConceptScore W4380148130C169258074 @default.
- W4380148130 hasConceptScore W4380148130C35525427 @default.
- W4380148130 hasConceptScore W4380148130C38652104 @default.
- W4380148130 hasConceptScore W4380148130C41008148 @default.
- W4380148130 hasConceptScore W4380148130C45942800 @default.
- W4380148130 hasConceptScore W4380148130C52001869 @default.
- W4380148130 hasConceptScore W4380148130C70153297 @default.
- W4380148130 hasConceptScore W4380148130C84525736 @default.
- W4380148130 hasConceptScore W4380148130C95623464 @default.
- W4380148130 hasLocation W43801481301 @default.
- W4380148130 hasOpenAccess W4380148130 @default.
- W4380148130 hasPrimaryLocation W43801481301 @default.
- W4380148130 hasRelatedWork W3127425528 @default.
- W4380148130 hasRelatedWork W3159716340 @default.
- W4380148130 hasRelatedWork W3204641204 @default.
- W4380148130 hasRelatedWork W4283016678 @default.
- W4380148130 hasRelatedWork W4285298015 @default.
- W4380148130 hasRelatedWork W4293069612 @default.
- W4380148130 hasRelatedWork W4296901315 @default.
- W4380148130 hasRelatedWork W4308191010 @default.
- W4380148130 hasRelatedWork W4316087365 @default.
- W4380148130 hasRelatedWork W4375930479 @default.
- W4380148130 isParatext "false" @default.
- W4380148130 isRetracted "false" @default.
- W4380148130 workType "book-chapter" @default.