Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380149089> ?p ?o ?g. }
- W4380149089 endingPage "125" @default.
- W4380149089 startingPage "116" @default.
- W4380149089 abstract "Food flavor analysis 4.0, originating from Industry 4.0, combines machine learning (ML) and food flavor analysis methods. Currently, food flavor analysis mainly depends on sensory evaluation, instrumental analysis, or a combination of both. In recent years, ML has been used effectively in the analysis and prediction of food flavor. However, few research teams have attempted to summarize the research progress in the combination of ML and food flavor analysis. This study focuses on the recent advances in food flavor analysis combined with supervised learning algorithms, including random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), neural network (NN), deep learning (DL), and hybrid algorithms. The application of ML in the determination of volatile aromatic compounds in meat, fruits, vegetables, and processed and fermented food products maintained a strong prediction stperformance. Both the back propagation neural network (BPNN) and KNN models performed well in the classification, with accuracy values higher than 90%. In contrast, the RF and SVM models delivered satisfactory performance in terms of classification and regression. Notably, the BPNN model achieved the highest classification accuracy in the analysis of extremely complex and similar samples, whereas the SVM model was considered an ideal regression algorithm when measuring a series of meat samples. In summary, food flavor analysis combined with ML has great potential for rapid detection of food additives, quality, and authenticity." @default.
- W4380149089 created "2023-06-11" @default.
- W4380149089 creator A5002831074 @default.
- W4380149089 creator A5023594276 @default.
- W4380149089 creator A5030090268 @default.
- W4380149089 creator A5050602459 @default.
- W4380149089 creator A5052883326 @default.
- W4380149089 creator A5060225035 @default.
- W4380149089 creator A5060642136 @default.
- W4380149089 creator A5083865800 @default.
- W4380149089 date "2023-08-01" @default.
- W4380149089 modified "2023-09-29" @default.
- W4380149089 title "Food flavor analysis 4.0: A cross-domain application of machine learning" @default.
- W4380149089 cites W1596717185 @default.
- W4380149089 cites W1982445512 @default.
- W4380149089 cites W1997750380 @default.
- W4380149089 cites W2001344502 @default.
- W4380149089 cites W2015436326 @default.
- W4380149089 cites W2027043498 @default.
- W4380149089 cites W2036599383 @default.
- W4380149089 cites W2037866349 @default.
- W4380149089 cites W2047470119 @default.
- W4380149089 cites W2052912973 @default.
- W4380149089 cites W2079810998 @default.
- W4380149089 cites W2105602124 @default.
- W4380149089 cites W2126366447 @default.
- W4380149089 cites W2159901710 @default.
- W4380149089 cites W2165993986 @default.
- W4380149089 cites W2581311652 @default.
- W4380149089 cites W2593994206 @default.
- W4380149089 cites W2616546220 @default.
- W4380149089 cites W2761704179 @default.
- W4380149089 cites W2762448751 @default.
- W4380149089 cites W2794284557 @default.
- W4380149089 cites W2889088037 @default.
- W4380149089 cites W2889807069 @default.
- W4380149089 cites W2896648566 @default.
- W4380149089 cites W2897769482 @default.
- W4380149089 cites W2902180922 @default.
- W4380149089 cites W2910285513 @default.
- W4380149089 cites W2911964244 @default.
- W4380149089 cites W2919930457 @default.
- W4380149089 cites W2942276384 @default.
- W4380149089 cites W2949490867 @default.
- W4380149089 cites W2963587312 @default.
- W4380149089 cites W2971361125 @default.
- W4380149089 cites W2974140502 @default.
- W4380149089 cites W2979866130 @default.
- W4380149089 cites W2981385605 @default.
- W4380149089 cites W2988575970 @default.
- W4380149089 cites W2995470054 @default.
- W4380149089 cites W2998807167 @default.
- W4380149089 cites W3033429994 @default.
- W4380149089 cites W3046115017 @default.
- W4380149089 cites W3091958544 @default.
- W4380149089 cites W3092461455 @default.
- W4380149089 cites W3098996042 @default.
- W4380149089 cites W3117307222 @default.
- W4380149089 cites W3121173206 @default.
- W4380149089 cites W3124401852 @default.
- W4380149089 cites W3135706323 @default.
- W4380149089 cites W3147809485 @default.
- W4380149089 cites W3164886443 @default.
- W4380149089 cites W3204650400 @default.
- W4380149089 cites W3205339941 @default.
- W4380149089 cites W4220928335 @default.
- W4380149089 doi "https://doi.org/10.1016/j.tifs.2023.06.011" @default.
- W4380149089 hasPublicationYear "2023" @default.
- W4380149089 type Work @default.
- W4380149089 citedByCount "0" @default.
- W4380149089 crossrefType "journal-article" @default.
- W4380149089 hasAuthorship W4380149089A5002831074 @default.
- W4380149089 hasAuthorship W4380149089A5023594276 @default.
- W4380149089 hasAuthorship W4380149089A5030090268 @default.
- W4380149089 hasAuthorship W4380149089A5050602459 @default.
- W4380149089 hasAuthorship W4380149089A5052883326 @default.
- W4380149089 hasAuthorship W4380149089A5060225035 @default.
- W4380149089 hasAuthorship W4380149089A5060642136 @default.
- W4380149089 hasAuthorship W4380149089A5083865800 @default.
- W4380149089 hasConcept C119857082 @default.
- W4380149089 hasConcept C12267149 @default.
- W4380149089 hasConcept C153180895 @default.
- W4380149089 hasConcept C154945302 @default.
- W4380149089 hasConcept C169258074 @default.
- W4380149089 hasConcept C185592680 @default.
- W4380149089 hasConcept C2780719635 @default.
- W4380149089 hasConcept C31903555 @default.
- W4380149089 hasConcept C33923547 @default.
- W4380149089 hasConcept C41008148 @default.
- W4380149089 hasConcept C50644808 @default.
- W4380149089 hasConceptScore W4380149089C119857082 @default.
- W4380149089 hasConceptScore W4380149089C12267149 @default.
- W4380149089 hasConceptScore W4380149089C153180895 @default.
- W4380149089 hasConceptScore W4380149089C154945302 @default.
- W4380149089 hasConceptScore W4380149089C169258074 @default.
- W4380149089 hasConceptScore W4380149089C185592680 @default.
- W4380149089 hasConceptScore W4380149089C2780719635 @default.
- W4380149089 hasConceptScore W4380149089C31903555 @default.