Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380154103> ?p ?o ?g. }
- W4380154103 endingPage "164734" @default.
- W4380154103 startingPage "164734" @default.
- W4380154103 abstract "The aim of this research is to propose a novel methodology that exploits Earth Observation (EO) data to accurately produce high-resolution bioclimatic maps at large spatiotemporal scales. This method directly links EO products (i.e., land surface temperature - LST and Normalized Difference Vegetation Index - NDVI) to air temperature (Tair) and such thermal indices as the Universal Thermal Climate Index (UTCI), and the Physiologically Equivalent Temperature (PET) to produce large-scale high-quality bioclimatic maps at a spatial resolution of 100 m. The proposed methodology is based on Artificial Neural Networks (ANNs), and the bioclimatic maps are developed with the use of Geographical Information Systems. High-resolution LST maps are produced from the spatial downscaling of EO images and the application of the methodology in the case of the island of Cyprus highlights the ability of EO parameters to estimate accurately Tair as well as the above mentioned thermal indices. The results are validated for different conditions and the overall Mean Absolute Error for each case ranges from 1.9 °C for Tair to 2.8 °C for PET and UTCI. The trained ANNs could be used in near real-time for estimating the spatial distribution of outdoor thermal conditions and for assessing the relationship between human health and the outdoor thermal environment. On the basis of the developed bioclimatic maps, high-risk areas were identified. Furthermore, the study examines the relationship between land cover and Tair, UTCI, and PET, and the results provide evidence of the suitability of the method to monitor the dynamics of the urban environment and the effectiveness of urban nature-based solutions. Studies on bioclimate analysis monitor thermal environment, raise awareness and enhance the capacity of national public health systems to respond to thermally-induced health risks." @default.
- W4380154103 created "2023-06-11" @default.
- W4380154103 creator A5004705836 @default.
- W4380154103 creator A5007063366 @default.
- W4380154103 creator A5022924615 @default.
- W4380154103 creator A5049253728 @default.
- W4380154103 creator A5054794831 @default.
- W4380154103 creator A5056065200 @default.
- W4380154103 creator A5086901686 @default.
- W4380154103 date "2023-10-01" @default.
- W4380154103 modified "2023-10-16" @default.
- W4380154103 title "A novel artificial neural network methodology to produce high-resolution bioclimatic maps using Earth Observation data: A case study for Cyprus" @default.
- W4380154103 cites W1967598892 @default.
- W4380154103 cites W1975324114 @default.
- W4380154103 cites W1977502891 @default.
- W4380154103 cites W1978043179 @default.
- W4380154103 cites W1985818700 @default.
- W4380154103 cites W1998079645 @default.
- W4380154103 cites W2005116986 @default.
- W4380154103 cites W2017496690 @default.
- W4380154103 cites W2018274339 @default.
- W4380154103 cites W2047549267 @default.
- W4380154103 cites W2051472571 @default.
- W4380154103 cites W2061086792 @default.
- W4380154103 cites W2067004572 @default.
- W4380154103 cites W2081576292 @default.
- W4380154103 cites W2092546891 @default.
- W4380154103 cites W2097030229 @default.
- W4380154103 cites W2108593239 @default.
- W4380154103 cites W2121745948 @default.
- W4380154103 cites W2129483521 @default.
- W4380154103 cites W2137983211 @default.
- W4380154103 cites W2156212004 @default.
- W4380154103 cites W2237378638 @default.
- W4380154103 cites W2258354078 @default.
- W4380154103 cites W2289805253 @default.
- W4380154103 cites W2292882536 @default.
- W4380154103 cites W2607266167 @default.
- W4380154103 cites W2725897987 @default.
- W4380154103 cites W2789298598 @default.
- W4380154103 cites W2794102218 @default.
- W4380154103 cites W2794409540 @default.
- W4380154103 cites W2898962279 @default.
- W4380154103 cites W2988538614 @default.
- W4380154103 cites W3004794249 @default.
- W4380154103 cites W3010422150 @default.
- W4380154103 cites W3025949386 @default.
- W4380154103 cites W3042785817 @default.
- W4380154103 cites W3048562341 @default.
- W4380154103 cites W3081652563 @default.
- W4380154103 cites W3123936588 @default.
- W4380154103 cites W3130855375 @default.
- W4380154103 cites W3153544187 @default.
- W4380154103 cites W3161549521 @default.
- W4380154103 cites W3168199592 @default.
- W4380154103 cites W3183301581 @default.
- W4380154103 cites W4200450535 @default.
- W4380154103 cites W4205645786 @default.
- W4380154103 cites W4221093155 @default.
- W4380154103 cites W4284968975 @default.
- W4380154103 cites W4288176190 @default.
- W4380154103 cites W4294117813 @default.
- W4380154103 cites W4295193379 @default.
- W4380154103 doi "https://doi.org/10.1016/j.scitotenv.2023.164734" @default.
- W4380154103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37302587" @default.
- W4380154103 hasPublicationYear "2023" @default.
- W4380154103 type Work @default.
- W4380154103 citedByCount "1" @default.
- W4380154103 countsByYear W43801541032023 @default.
- W4380154103 crossrefType "journal-article" @default.
- W4380154103 hasAuthorship W4380154103A5004705836 @default.
- W4380154103 hasAuthorship W4380154103A5007063366 @default.
- W4380154103 hasAuthorship W4380154103A5022924615 @default.
- W4380154103 hasAuthorship W4380154103A5049253728 @default.
- W4380154103 hasAuthorship W4380154103A5054794831 @default.
- W4380154103 hasAuthorship W4380154103A5056065200 @default.
- W4380154103 hasAuthorship W4380154103A5086901686 @default.
- W4380154103 hasConcept C107054158 @default.
- W4380154103 hasConcept C119857082 @default.
- W4380154103 hasConcept C132651083 @default.
- W4380154103 hasConcept C142724271 @default.
- W4380154103 hasConcept C153294291 @default.
- W4380154103 hasConcept C1549246 @default.
- W4380154103 hasConcept C154945302 @default.
- W4380154103 hasConcept C18903297 @default.
- W4380154103 hasConcept C205372480 @default.
- W4380154103 hasConcept C205649164 @default.
- W4380154103 hasConcept C2524010 @default.
- W4380154103 hasConcept C2776133958 @default.
- W4380154103 hasConcept C2778755073 @default.
- W4380154103 hasConcept C2780648208 @default.
- W4380154103 hasConcept C33923547 @default.
- W4380154103 hasConcept C37054046 @default.
- W4380154103 hasConcept C39432304 @default.
- W4380154103 hasConcept C41008148 @default.
- W4380154103 hasConcept C41156917 @default.
- W4380154103 hasConcept C4792198 @default.
- W4380154103 hasConcept C50644808 @default.