Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380184602> ?p ?o ?g. }
- W4380184602 abstract "The macular ganglion cell layer (mGCL) is a strong potential biomarker of axonal degeneration in multiple sclerosis (MS). For this reason, this study aims to develop a computer-aided method to facilitate diagnosis and prognosis in MS.This paper combines a cross-sectional study of 72 MS patients and 30 healthy control subjects for diagnosis and a 10-year longitudinal study of the same MS patients for the prediction of disability progression, during which the mGCL was measured using optical coherence tomography (OCT). Deep neural networks were used as an automatic classifier.For MS diagnosis, greatest accuracy (90.3%) was achieved using 17 features as inputs. The neural network architecture comprised the input layer, two hidden layers and the output layer with softmax activation. For the prediction of disability progression 8 years later, accuracy of 81.9% was achieved with a neural network comprising two hidden layers and 400 epochs.We present evidence that by applying deep learning techniques to clinical and mGCL thickness data it is possible to identify MS and predict the course of the disease. This approach potentially constitutes a non-invasive, low-cost, easy-to-implement and effective method." @default.
- W4380184602 created "2023-06-11" @default.
- W4380184602 creator A5015094639 @default.
- W4380184602 creator A5016674233 @default.
- W4380184602 creator A5049602302 @default.
- W4380184602 creator A5062013995 @default.
- W4380184602 date "2023-06-10" @default.
- W4380184602 modified "2023-10-01" @default.
- W4380184602 title "The macular retinal ganglion cell layer as a biomarker for diagnosis and prognosis in multiple sclerosis: A deep learning approach" @default.
- W4380184602 cites W1828579964 @default.
- W4380184602 cites W1976567755 @default.
- W4380184602 cites W1991181258 @default.
- W4380184602 cites W2037668591 @default.
- W4380184602 cites W2048199202 @default.
- W4380184602 cites W2099838434 @default.
- W4380184602 cites W2108219952 @default.
- W4380184602 cites W2122545833 @default.
- W4380184602 cites W2155549286 @default.
- W4380184602 cites W2158143121 @default.
- W4380184602 cites W2172431827 @default.
- W4380184602 cites W2345156418 @default.
- W4380184602 cites W2401147790 @default.
- W4380184602 cites W2528519892 @default.
- W4380184602 cites W2587776950 @default.
- W4380184602 cites W2619457510 @default.
- W4380184602 cites W2742947264 @default.
- W4380184602 cites W2755106885 @default.
- W4380184602 cites W2765449478 @default.
- W4380184602 cites W2767711191 @default.
- W4380184602 cites W2777074421 @default.
- W4380184602 cites W2777186991 @default.
- W4380184602 cites W2792597864 @default.
- W4380184602 cites W2800618882 @default.
- W4380184602 cites W2801888149 @default.
- W4380184602 cites W2892369591 @default.
- W4380184602 cites W2896236534 @default.
- W4380184602 cites W2900258301 @default.
- W4380184602 cites W2903617078 @default.
- W4380184602 cites W2909477211 @default.
- W4380184602 cites W2921986546 @default.
- W4380184602 cites W2924908224 @default.
- W4380184602 cites W2943959904 @default.
- W4380184602 cites W2949143034 @default.
- W4380184602 cites W2961280627 @default.
- W4380184602 cites W2964262389 @default.
- W4380184602 cites W2991011855 @default.
- W4380184602 cites W2992200549 @default.
- W4380184602 cites W2995209110 @default.
- W4380184602 cites W2999511629 @default.
- W4380184602 cites W3011609483 @default.
- W4380184602 cites W3012619665 @default.
- W4380184602 cites W3038914198 @default.
- W4380184602 cites W3097233996 @default.
- W4380184602 cites W3097347726 @default.
- W4380184602 cites W3106750174 @default.
- W4380184602 cites W3107309763 @default.
- W4380184602 cites W3110982212 @default.
- W4380184602 cites W3127430309 @default.
- W4380184602 cites W3135489146 @default.
- W4380184602 cites W3139409750 @default.
- W4380184602 cites W3159237871 @default.
- W4380184602 cites W3162677054 @default.
- W4380184602 cites W4200318443 @default.
- W4380184602 cites W4214688459 @default.
- W4380184602 cites W4281747553 @default.
- W4380184602 cites W4281994448 @default.
- W4380184602 cites W4283690298 @default.
- W4380184602 cites W429766147 @default.
- W4380184602 doi "https://doi.org/10.1111/aos.15722" @default.
- W4380184602 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37300357" @default.
- W4380184602 hasPublicationYear "2023" @default.
- W4380184602 type Work @default.
- W4380184602 citedByCount "0" @default.
- W4380184602 crossrefType "journal-article" @default.
- W4380184602 hasAuthorship W4380184602A5015094639 @default.
- W4380184602 hasAuthorship W4380184602A5016674233 @default.
- W4380184602 hasAuthorship W4380184602A5049602302 @default.
- W4380184602 hasAuthorship W4380184602A5062013995 @default.
- W4380184602 hasBestOaLocation W43801846021 @default.
- W4380184602 hasConcept C105702510 @default.
- W4380184602 hasConcept C108583219 @default.
- W4380184602 hasConcept C118487528 @default.
- W4380184602 hasConcept C118552586 @default.
- W4380184602 hasConcept C154945302 @default.
- W4380184602 hasConcept C188441871 @default.
- W4380184602 hasConcept C2778818243 @default.
- W4380184602 hasConcept C2780640218 @default.
- W4380184602 hasConcept C2780827179 @default.
- W4380184602 hasConcept C2781099447 @default.
- W4380184602 hasConcept C2781197716 @default.
- W4380184602 hasConcept C2781334511 @default.
- W4380184602 hasConcept C41008148 @default.
- W4380184602 hasConcept C50644808 @default.
- W4380184602 hasConcept C55493867 @default.
- W4380184602 hasConcept C71924100 @default.
- W4380184602 hasConcept C86803240 @default.
- W4380184602 hasConceptScore W4380184602C105702510 @default.
- W4380184602 hasConceptScore W4380184602C108583219 @default.
- W4380184602 hasConceptScore W4380184602C118487528 @default.
- W4380184602 hasConceptScore W4380184602C118552586 @default.