Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380184772> ?p ?o ?g. }
- W4380184772 endingPage "123" @default.
- W4380184772 startingPage "123" @default.
- W4380184772 abstract "The advents of information technologies have led to the creation of ever-larger datasets. Also known as big data, these large datasets are characterized by its volume, variety, velocity, veracity, and value. More importantly, big data has the potential to expand traditional research capabilities, inform clinical practice based on real-world data, and improve the health system and service delivery. This review first identified the different sources of big data in ophthalmology, including electronic medical records, data registries, research consortia, administrative databases, and biobanks. Then, we provided an in-depth look at how big data analytics have been applied in ophthalmology for disease surveillance, and evaluation on disease associations, detection, management, and prognostication. Finally, we discussed the challenges involved in big data analytics, such as data suitability and quality, data security, and analytical methodologies." @default.
- W4380184772 created "2023-06-11" @default.
- W4380184772 creator A5020727354 @default.
- W4380184772 creator A5061806340 @default.
- W4380184772 date "2023-01-01" @default.
- W4380184772 modified "2023-10-14" @default.
- W4380184772 title "Application of big data in ophthalmology" @default.
- W4380184772 cites W1598788287 @default.
- W4380184772 cites W1605960500 @default.
- W4380184772 cites W1890266700 @default.
- W4380184772 cites W1965007633 @default.
- W4380184772 cites W1978704499 @default.
- W4380184772 cites W2000920973 @default.
- W4380184772 cites W2018742491 @default.
- W4380184772 cites W2047661596 @default.
- W4380184772 cites W2082302018 @default.
- W4380184772 cites W2110370370 @default.
- W4380184772 cites W2115369912 @default.
- W4380184772 cites W2122872904 @default.
- W4380184772 cites W2124527903 @default.
- W4380184772 cites W2124950593 @default.
- W4380184772 cites W2136159682 @default.
- W4380184772 cites W2138480916 @default.
- W4380184772 cites W2145539024 @default.
- W4380184772 cites W2154238518 @default.
- W4380184772 cites W2157634118 @default.
- W4380184772 cites W2165558391 @default.
- W4380184772 cites W2165576114 @default.
- W4380184772 cites W2169818249 @default.
- W4380184772 cites W2169961704 @default.
- W4380184772 cites W2171114494 @default.
- W4380184772 cites W2196796650 @default.
- W4380184772 cites W2199776059 @default.
- W4380184772 cites W2269551617 @default.
- W4380184772 cites W2403763108 @default.
- W4380184772 cites W2470523799 @default.
- W4380184772 cites W2476316306 @default.
- W4380184772 cites W2557738935 @default.
- W4380184772 cites W2598227971 @default.
- W4380184772 cites W2605269796 @default.
- W4380184772 cites W2607582134 @default.
- W4380184772 cites W2743639829 @default.
- W4380184772 cites W2765524190 @default.
- W4380184772 cites W2765867514 @default.
- W4380184772 cites W2766333003 @default.
- W4380184772 cites W2768578909 @default.
- W4380184772 cites W2772246530 @default.
- W4380184772 cites W2782932304 @default.
- W4380184772 cites W2790337561 @default.
- W4380184772 cites W2793682084 @default.
- W4380184772 cites W2799450676 @default.
- W4380184772 cites W2810823800 @default.
- W4380184772 cites W2883175396 @default.
- W4380184772 cites W2883943057 @default.
- W4380184772 cites W2884990155 @default.
- W4380184772 cites W2895486342 @default.
- W4380184772 cites W2900266642 @default.
- W4380184772 cites W2904741716 @default.
- W4380184772 cites W2916137561 @default.
- W4380184772 cites W2916364889 @default.
- W4380184772 cites W2919115771 @default.
- W4380184772 cites W2954505781 @default.
- W4380184772 cites W2962949934 @default.
- W4380184772 cites W2979307262 @default.
- W4380184772 cites W2982158520 @default.
- W4380184772 cites W2998804429 @default.
- W4380184772 cites W3000547714 @default.
- W4380184772 cites W3000686922 @default.
- W4380184772 cites W3007920274 @default.
- W4380184772 cites W3023691938 @default.
- W4380184772 cites W3043182008 @default.
- W4380184772 cites W3089653673 @default.
- W4380184772 cites W3092462775 @default.
- W4380184772 cites W3100628288 @default.
- W4380184772 cites W3100869523 @default.
- W4380184772 cites W3116371961 @default.
- W4380184772 cites W3120781358 @default.
- W4380184772 cites W3131037556 @default.
- W4380184772 cites W3136077665 @default.
- W4380184772 cites W3153968460 @default.
- W4380184772 cites W3156620872 @default.
- W4380184772 cites W3160716645 @default.
- W4380184772 cites W3168428886 @default.
- W4380184772 cites W3181600390 @default.
- W4380184772 cites W3187668852 @default.
- W4380184772 cites W3210396107 @default.
- W4380184772 cites W3217022988 @default.
- W4380184772 cites W3217099905 @default.
- W4380184772 cites W4224219861 @default.
- W4380184772 cites W4231630864 @default.
- W4380184772 cites W4236218212 @default.
- W4380184772 cites W4283655517 @default.
- W4380184772 cites W4304471715 @default.
- W4380184772 doi "https://doi.org/10.4103/tjo.tjo-d-23-00012" @default.
- W4380184772 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37484625" @default.
- W4380184772 hasPublicationYear "2023" @default.
- W4380184772 type Work @default.
- W4380184772 citedByCount "1" @default.