Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380189628> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4380189628 endingPage "136" @default.
- W4380189628 startingPage "122" @default.
- W4380189628 abstract "Over 500 million people have fallen prey to the coronavirus (COVID-19) epidemic that is sweeping the world. The traditional method for detecting it is pathogenic laboratory testing, but it has a high risk of false negatives, forcing the development of additional diagnostic approaches to combat the disease. X-ray imaging is a straightforward and patient-friendly operation that may be performed in almost any healthcare facility. The aim of the report is to use transfer learning models to build a feasible mechanism for determining COVID-19 pneumonia automatically utilizing chest X-ray images while enhancing detection accuracy. On three publicly available datasets, we ran several experiments. The recommended mechanism is intended to provide multi-class classification diagnostics (COVID-19 pneumonia vs. Non COVID-19 pneumonia vs. Normal). In this study, 5 selected best transfer learning methods out of 9 alternative models were tested in various scenarios with varied dataset splitting and amalgamation. Based on their performance with the Merged dataset, an ensemble model was developed using top three models. Our proposed ensemble model had classification accuracy, precision, recall, and f1-score of 99.62%, 1, 0.99, and 1.00 for multi-class cases, respectively. It detected 99.12% of COVID-19 pneumonia accurately. This recommended system can considerably improve COVID-19 diagnosis time and efficiency." @default.
- W4380189628 created "2023-06-11" @default.
- W4380189628 creator A5027075000 @default.
- W4380189628 creator A5058377871 @default.
- W4380189628 date "2023-01-01" @default.
- W4380189628 modified "2023-09-27" @default.
- W4380189628 title "A Reliable and Efficient Transfer Learning Approach for Identifying COVID-19 Pneumonia from Chest X-ray" @default.
- W4380189628 cites W2056568601 @default.
- W4380189628 cites W2165698076 @default.
- W4380189628 cites W2183341477 @default.
- W4380189628 cites W2194775991 @default.
- W4380189628 cites W2395579298 @default.
- W4380189628 cites W2558580397 @default.
- W4380189628 cites W2924911266 @default.
- W4380189628 cites W2963446712 @default.
- W4380189628 cites W2970602317 @default.
- W4380189628 cites W3010702679 @default.
- W4380189628 cites W3010821523 @default.
- W4380189628 cites W3013277995 @default.
- W4380189628 cites W3017855299 @default.
- W4380189628 cites W3033616466 @default.
- W4380189628 cites W3049516045 @default.
- W4380189628 cites W3106539405 @default.
- W4380189628 cites W3107979957 @default.
- W4380189628 cites W3120327591 @default.
- W4380189628 cites W3120374612 @default.
- W4380189628 cites W3128189270 @default.
- W4380189628 cites W3135057764 @default.
- W4380189628 cites W3162351260 @default.
- W4380189628 cites W3184726726 @default.
- W4380189628 doi "https://doi.org/10.1007/978-3-031-34619-4_11" @default.
- W4380189628 hasPublicationYear "2023" @default.
- W4380189628 type Work @default.
- W4380189628 citedByCount "0" @default.
- W4380189628 crossrefType "book-chapter" @default.
- W4380189628 hasAuthorship W4380189628A5027075000 @default.
- W4380189628 hasAuthorship W4380189628A5058377871 @default.
- W4380189628 hasConcept C100660578 @default.
- W4380189628 hasConcept C119857082 @default.
- W4380189628 hasConcept C126322002 @default.
- W4380189628 hasConcept C142724271 @default.
- W4380189628 hasConcept C150899416 @default.
- W4380189628 hasConcept C154945302 @default.
- W4380189628 hasConcept C15744967 @default.
- W4380189628 hasConcept C180747234 @default.
- W4380189628 hasConcept C2777212361 @default.
- W4380189628 hasConcept C2777914695 @default.
- W4380189628 hasConcept C2779134260 @default.
- W4380189628 hasConcept C3008058167 @default.
- W4380189628 hasConcept C41008148 @default.
- W4380189628 hasConcept C45942800 @default.
- W4380189628 hasConcept C524204448 @default.
- W4380189628 hasConcept C71924100 @default.
- W4380189628 hasConceptScore W4380189628C100660578 @default.
- W4380189628 hasConceptScore W4380189628C119857082 @default.
- W4380189628 hasConceptScore W4380189628C126322002 @default.
- W4380189628 hasConceptScore W4380189628C142724271 @default.
- W4380189628 hasConceptScore W4380189628C150899416 @default.
- W4380189628 hasConceptScore W4380189628C154945302 @default.
- W4380189628 hasConceptScore W4380189628C15744967 @default.
- W4380189628 hasConceptScore W4380189628C180747234 @default.
- W4380189628 hasConceptScore W4380189628C2777212361 @default.
- W4380189628 hasConceptScore W4380189628C2777914695 @default.
- W4380189628 hasConceptScore W4380189628C2779134260 @default.
- W4380189628 hasConceptScore W4380189628C3008058167 @default.
- W4380189628 hasConceptScore W4380189628C41008148 @default.
- W4380189628 hasConceptScore W4380189628C45942800 @default.
- W4380189628 hasConceptScore W4380189628C524204448 @default.
- W4380189628 hasConceptScore W4380189628C71924100 @default.
- W4380189628 hasLocation W43801896281 @default.
- W4380189628 hasOpenAccess W4380189628 @default.
- W4380189628 hasPrimaryLocation W43801896281 @default.
- W4380189628 hasRelatedWork W2960456850 @default.
- W4380189628 hasRelatedWork W3014666486 @default.
- W4380189628 hasRelatedWork W4200409985 @default.
- W4380189628 hasRelatedWork W4213299466 @default.
- W4380189628 hasRelatedWork W4281382123 @default.
- W4380189628 hasRelatedWork W4285046548 @default.
- W4380189628 hasRelatedWork W4285741730 @default.
- W4380189628 hasRelatedWork W4292969247 @default.
- W4380189628 hasRelatedWork W4308262314 @default.
- W4380189628 hasRelatedWork W4322727400 @default.
- W4380189628 isParatext "false" @default.
- W4380189628 isRetracted "false" @default.
- W4380189628 workType "book-chapter" @default.