Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380200923> ?p ?o ?g. }
- W4380200923 endingPage "110708" @default.
- W4380200923 startingPage "110708" @default.
- W4380200923 abstract "Multi-scenario multi-objective optimization problems (MSMOPs) are a topic of considerable interest in the field of optimization. The MSMOP contains a set of multi-objective optimization problems arising from varying operating conditions, with the goal of determining a set of communal compromise solutions. However, there are few universal methods available for MSMOPs. This paper presents a general method incorporating transfer learning for MSMOPs. First, a multi-scenario ensemble framework that transfers knowledge between scenarios is developed to combine arbitrary multi-objective evolutionary algorithms, where a scenario-based comprehensive evaluation indicator is developed for combination with base learners. Then, an adaptive decomposition-based multi-objective evolutionary algorithm with a bi-layer selection (EADaBS) is proposed and embedded within the framework as a base learner. EADaBS incorporates an adaptive fitness assignment in its first layer to facilitate exploration, and density measurement in its second layer to ensure exploitation. A rebalancing operator is also designed to aid the population towards the Pareto front. Finally, a multitude of experiments is conducted to verify the effectiveness and efficiency of the proposed algorithms. Two three-scenario multi-objective optimization problems are designed and utilized as test problems. The experimental results clearly demonstrate that the proposed framework outperforms existing state-of-the-art algorithms. In conclusion, this research provides new insights into the solution of MSMOPs." @default.
- W4380200923 created "2023-06-11" @default.
- W4380200923 creator A5007928549 @default.
- W4380200923 creator A5013598163 @default.
- W4380200923 creator A5032222101 @default.
- W4380200923 creator A5046810955 @default.
- W4380200923 creator A5068376674 @default.
- W4380200923 creator A5070776654 @default.
- W4380200923 date "2023-09-01" @default.
- W4380200923 modified "2023-10-16" @default.
- W4380200923 title "An ensemble learning-based multi-population evolutionary framework for multi-scenario multi-objective optimization problems" @default.
- W4380200923 cites W2022485595 @default.
- W4380200923 cites W2024008934 @default.
- W4380200923 cites W2052775830 @default.
- W4380200923 cites W2125899728 @default.
- W4380200923 cites W2126105956 @default.
- W4380200923 cites W2131476630 @default.
- W4380200923 cites W2140466045 @default.
- W4380200923 cites W2143381319 @default.
- W4380200923 cites W2413527939 @default.
- W4380200923 cites W2466060750 @default.
- W4380200923 cites W2585528949 @default.
- W4380200923 cites W2602516395 @default.
- W4380200923 cites W2735649024 @default.
- W4380200923 cites W2769571709 @default.
- W4380200923 cites W2769670622 @default.
- W4380200923 cites W2770136164 @default.
- W4380200923 cites W2791738125 @default.
- W4380200923 cites W2798139910 @default.
- W4380200923 cites W2799642487 @default.
- W4380200923 cites W2800879376 @default.
- W4380200923 cites W2808807389 @default.
- W4380200923 cites W2889750846 @default.
- W4380200923 cites W2904293221 @default.
- W4380200923 cites W2914967911 @default.
- W4380200923 cites W2921981915 @default.
- W4380200923 cites W2946725000 @default.
- W4380200923 cites W2971512186 @default.
- W4380200923 cites W2985702766 @default.
- W4380200923 cites W2987318885 @default.
- W4380200923 cites W3001108831 @default.
- W4380200923 cites W3006424594 @default.
- W4380200923 cites W3009895648 @default.
- W4380200923 cites W3036044602 @default.
- W4380200923 cites W3047314119 @default.
- W4380200923 cites W3082549393 @default.
- W4380200923 cites W3100195331 @default.
- W4380200923 cites W3106294278 @default.
- W4380200923 cites W3109800244 @default.
- W4380200923 cites W3110123867 @default.
- W4380200923 cites W4250913065 @default.
- W4380200923 cites W4367011720 @default.
- W4380200923 doi "https://doi.org/10.1016/j.knosys.2023.110708" @default.
- W4380200923 hasPublicationYear "2023" @default.
- W4380200923 type Work @default.
- W4380200923 citedByCount "0" @default.
- W4380200923 crossrefType "journal-article" @default.
- W4380200923 hasAuthorship W4380200923A5007928549 @default.
- W4380200923 hasAuthorship W4380200923A5013598163 @default.
- W4380200923 hasAuthorship W4380200923A5032222101 @default.
- W4380200923 hasAuthorship W4380200923A5046810955 @default.
- W4380200923 hasAuthorship W4380200923A5068376674 @default.
- W4380200923 hasAuthorship W4380200923A5070776654 @default.
- W4380200923 hasConcept C11413529 @default.
- W4380200923 hasConcept C119857082 @default.
- W4380200923 hasConcept C124681953 @default.
- W4380200923 hasConcept C126255220 @default.
- W4380200923 hasConcept C137836250 @default.
- W4380200923 hasConcept C144024400 @default.
- W4380200923 hasConcept C149923435 @default.
- W4380200923 hasConcept C154945302 @default.
- W4380200923 hasConcept C159149176 @default.
- W4380200923 hasConcept C177264268 @default.
- W4380200923 hasConcept C18903297 @default.
- W4380200923 hasConcept C199360897 @default.
- W4380200923 hasConcept C202444582 @default.
- W4380200923 hasConcept C2908647359 @default.
- W4380200923 hasConcept C33923547 @default.
- W4380200923 hasConcept C41008148 @default.
- W4380200923 hasConcept C45942800 @default.
- W4380200923 hasConcept C68781425 @default.
- W4380200923 hasConcept C86803240 @default.
- W4380200923 hasConcept C9652623 @default.
- W4380200923 hasConceptScore W4380200923C11413529 @default.
- W4380200923 hasConceptScore W4380200923C119857082 @default.
- W4380200923 hasConceptScore W4380200923C124681953 @default.
- W4380200923 hasConceptScore W4380200923C126255220 @default.
- W4380200923 hasConceptScore W4380200923C137836250 @default.
- W4380200923 hasConceptScore W4380200923C144024400 @default.
- W4380200923 hasConceptScore W4380200923C149923435 @default.
- W4380200923 hasConceptScore W4380200923C154945302 @default.
- W4380200923 hasConceptScore W4380200923C159149176 @default.
- W4380200923 hasConceptScore W4380200923C177264268 @default.
- W4380200923 hasConceptScore W4380200923C18903297 @default.
- W4380200923 hasConceptScore W4380200923C199360897 @default.
- W4380200923 hasConceptScore W4380200923C202444582 @default.
- W4380200923 hasConceptScore W4380200923C2908647359 @default.
- W4380200923 hasConceptScore W4380200923C33923547 @default.