Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380201700> ?p ?o ?g. }
- W4380201700 endingPage "126435" @default.
- W4380201700 startingPage "126435" @default.
- W4380201700 abstract "In this paper we propose and discuss different Deep Learning-based ensemble algorithms for a problem of low-visibility events prediction due to fog. Specifically, seven different Deep Learning (DL) architectures have been considered, from which multiple individual learners are generated. Hyperparameters of the models, including parameters concerning data preprocessing, models architecture and training procedure, are randomly selected for each model within a pre-defined discrete range. Also, every model is trained with slightly different data sampled randomly, assuring that every models introduce variety in the ensemble. Then, three different information fusion techniques are employed to build the ensemble models. The influence of the filtering process and the elitism level (the percentage of the individual models entering the ensemble) is also assessed. The performance of the proposed methodology have been tested in two real problems of low-visibility events prediction due to orographical and radiation fog, at the north of Spain. Comparison with different Machine Learning, alternative DL algorithms and meteorological-based methods show the good performance of the proposed deep learning ensembles in this problem." @default.
- W4380201700 created "2023-06-11" @default.
- W4380201700 creator A5024548236 @default.
- W4380201700 creator A5034384417 @default.
- W4380201700 creator A5060780612 @default.
- W4380201700 creator A5061780972 @default.
- W4380201700 creator A5072211886 @default.
- W4380201700 creator A5073509546 @default.
- W4380201700 creator A5092135550 @default.
- W4380201700 date "2023-09-01" @default.
- W4380201700 modified "2023-10-18" @default.
- W4380201700 title "Deep learning ensembles for accurate fog-related low-visibility events forecasting" @default.
- W4380201700 cites W1120922828 @default.
- W4380201700 cites W1705374184 @default.
- W4380201700 cites W1790870804 @default.
- W4380201700 cites W1974829837 @default.
- W4380201700 cites W1976580360 @default.
- W4380201700 cites W1977177161 @default.
- W4380201700 cites W1977587074 @default.
- W4380201700 cites W1996640396 @default.
- W4380201700 cites W2024924759 @default.
- W4380201700 cites W2026430219 @default.
- W4380201700 cites W2031452593 @default.
- W4380201700 cites W2032481853 @default.
- W4380201700 cites W2036649100 @default.
- W4380201700 cites W2036679573 @default.
- W4380201700 cites W2040414337 @default.
- W4380201700 cites W2061082730 @default.
- W4380201700 cites W2064675550 @default.
- W4380201700 cites W2069563189 @default.
- W4380201700 cites W2097900287 @default.
- W4380201700 cites W2111072639 @default.
- W4380201700 cites W2120890550 @default.
- W4380201700 cites W2143612262 @default.
- W4380201700 cites W2174601942 @default.
- W4380201700 cites W2177150626 @default.
- W4380201700 cites W2194775991 @default.
- W4380201700 cites W2267186426 @default.
- W4380201700 cites W2270330859 @default.
- W4380201700 cites W2460615870 @default.
- W4380201700 cites W2511683089 @default.
- W4380201700 cites W2538830880 @default.
- W4380201700 cites W2560370080 @default.
- W4380201700 cites W2593940065 @default.
- W4380201700 cites W2618530766 @default.
- W4380201700 cites W2702018927 @default.
- W4380201700 cites W2737654582 @default.
- W4380201700 cites W2738752875 @default.
- W4380201700 cites W2758874168 @default.
- W4380201700 cites W2771134856 @default.
- W4380201700 cites W2794937634 @default.
- W4380201700 cites W2796072231 @default.
- W4380201700 cites W2806062184 @default.
- W4380201700 cites W2883228808 @default.
- W4380201700 cites W2892035503 @default.
- W4380201700 cites W2897113013 @default.
- W4380201700 cites W2911964244 @default.
- W4380201700 cites W2920956473 @default.
- W4380201700 cites W2921905804 @default.
- W4380201700 cites W2935683480 @default.
- W4380201700 cites W2949449669 @default.
- W4380201700 cites W2970602317 @default.
- W4380201700 cites W3004442222 @default.
- W4380201700 cites W3005289256 @default.
- W4380201700 cites W3021216301 @default.
- W4380201700 cites W3022643593 @default.
- W4380201700 cites W3034021666 @default.
- W4380201700 cites W3109365969 @default.
- W4380201700 cites W3122775348 @default.
- W4380201700 cites W3134332122 @default.
- W4380201700 cites W3139885963 @default.
- W4380201700 cites W3158233180 @default.
- W4380201700 cites W3164442899 @default.
- W4380201700 cites W3169090118 @default.
- W4380201700 cites W3199429651 @default.
- W4380201700 cites W3201357788 @default.
- W4380201700 cites W3209152735 @default.
- W4380201700 cites W4212883601 @default.
- W4380201700 cites W4220674835 @default.
- W4380201700 cites W4220764081 @default.
- W4380201700 cites W4220856545 @default.
- W4380201700 cites W4226043455 @default.
- W4380201700 cites W4233056867 @default.
- W4380201700 cites W4233345704 @default.
- W4380201700 cites W4240294902 @default.
- W4380201700 cites W4281290911 @default.
- W4380201700 cites W4285732704 @default.
- W4380201700 cites W4295015172 @default.
- W4380201700 cites W4298109833 @default.
- W4380201700 cites W4306362185 @default.
- W4380201700 cites W4306652301 @default.
- W4380201700 cites W4310679929 @default.
- W4380201700 cites W4315651321 @default.
- W4380201700 cites W4317036119 @default.
- W4380201700 doi "https://doi.org/10.1016/j.neucom.2023.126435" @default.
- W4380201700 hasPublicationYear "2023" @default.
- W4380201700 type Work @default.
- W4380201700 citedByCount "3" @default.