Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380201984> ?p ?o ?g. }
- W4380201984 endingPage "107674" @default.
- W4380201984 startingPage "107674" @default.
- W4380201984 abstract "Cardiovascular disease is one of the leading causes of death worldwide. However, according to studies, 90% of cardiovascular diseases can be prevented. Cardiovascular function parameters are an important basis for the diagnosis of cardiovascular diseases. The pulse wave also contains a wealth of physiological and pathological information, which can reflect the trend of cardiac function parameters at an early stage, so the measurement and analysis of the pulse wave signal becomes more and more important. The wearable pulse signal acquisition device has gradually become a new trend. In the mobile health scenario, convenient use is the prerequisite for long-term and rapid health monitoring. The data containing diverse pulse wave signals is the basis for obtaining more comprehensive and accurate human physiopathological information. Accurate data analysis and processing is the key to realizing the important goal of cardiovascular health monitoring.Based on the concept of mobile health care, wearable devices are developed to obtain physiological signals. The zero-dimensional model and the optimization algorithm are combined to complete the uncertainty quantification of the microcirculation parameters. Then, a feature set containing the cardiovasvular parameters can be constructed. The machine learning algorithm can be used to build a model that can accurately realize cardiovascular disease identification.This paper adopts laboratory-developed equipment to acquire the wrist pulse wave and fingertip volume pulse wave. A total of 323 samples were collected from healthy populations, hypertensive patients and patients with coronary heart disease (CHD). The pulse blood flow model in fingertip microcirculation is established, and the uncertainty quantification of model parameters is completed based on slime mold algorithm (SMA). After comparing and analyzing the performance of four algorithms on pulse wave classification, the identification model of cardiovascular diseases is established based on the microcirculatory characteristic parameter set and random forest algorithm (RF).RF showed good classification performance among the four classification algorithms. The identification accuracy of the model built on the microcirculatory characteristic parameter set and RF algorithm all reached more than 88%. The highest recognition accuracy was 95.51% for coronary heart disease samples, 92.11% for healthy samples, and 88.55% for hypertensive samples. It can be seen that the model based on RF algorithm has a good ability to distinguish the characteristic parameters in different cardiovascular health states.The wearable device designed in this paper can facilitate the daily health monitoring of cardiovascular disease. By using the combination of the physical model and machine learning model, the uncertainty quantification of microcirculation parameters and the identification of cardiovascular disease was finally completed. The recognition model based on machine learning provides a new idea and method for the research of cardiovascular health monitoring through pulse waves." @default.
- W4380201984 created "2023-06-11" @default.
- W4380201984 creator A5004959591 @default.
- W4380201984 creator A5007691358 @default.
- W4380201984 creator A5016603463 @default.
- W4380201984 creator A5027213805 @default.
- W4380201984 creator A5030855177 @default.
- W4380201984 creator A5048522355 @default.
- W4380201984 creator A5060209737 @default.
- W4380201984 creator A5090880123 @default.
- W4380201984 date "2023-10-01" @default.
- W4380201984 modified "2023-09-25" @default.
- W4380201984 title "Uncertainty quantification of microcirculatory characteristic parameters for recognition of cardiovascular diseases" @default.
- W4380201984 cites W1968348704 @default.
- W4380201984 cites W1979613698 @default.
- W4380201984 cites W1990563875 @default.
- W4380201984 cites W2003321679 @default.
- W4380201984 cites W2008368803 @default.
- W4380201984 cites W2019882679 @default.
- W4380201984 cites W2093195672 @default.
- W4380201984 cites W2125914602 @default.
- W4380201984 cites W2793683257 @default.
- W4380201984 cites W2946770385 @default.
- W4380201984 cites W2968030271 @default.
- W4380201984 cites W3014974411 @default.
- W4380201984 cites W3099117236 @default.
- W4380201984 cites W3164252246 @default.
- W4380201984 cites W3169620914 @default.
- W4380201984 cites W4210619160 @default.
- W4380201984 doi "https://doi.org/10.1016/j.cmpb.2023.107674" @default.
- W4380201984 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37343374" @default.
- W4380201984 hasPublicationYear "2023" @default.
- W4380201984 type Work @default.
- W4380201984 citedByCount "0" @default.
- W4380201984 crossrefType "journal-article" @default.
- W4380201984 hasAuthorship W4380201984A5004959591 @default.
- W4380201984 hasAuthorship W4380201984A5007691358 @default.
- W4380201984 hasAuthorship W4380201984A5016603463 @default.
- W4380201984 hasAuthorship W4380201984A5027213805 @default.
- W4380201984 hasAuthorship W4380201984A5030855177 @default.
- W4380201984 hasAuthorship W4380201984A5048522355 @default.
- W4380201984 hasAuthorship W4380201984A5060209737 @default.
- W4380201984 hasAuthorship W4380201984A5090880123 @default.
- W4380201984 hasBestOaLocation W43802019841 @default.
- W4380201984 hasConcept C116390426 @default.
- W4380201984 hasConcept C126322002 @default.
- W4380201984 hasConcept C134652429 @default.
- W4380201984 hasConcept C136229726 @default.
- W4380201984 hasConcept C138885662 @default.
- W4380201984 hasConcept C149635348 @default.
- W4380201984 hasConcept C150594956 @default.
- W4380201984 hasConcept C154945302 @default.
- W4380201984 hasConcept C172321821 @default.
- W4380201984 hasConcept C199360897 @default.
- W4380201984 hasConcept C2776401178 @default.
- W4380201984 hasConcept C2779134260 @default.
- W4380201984 hasConcept C2779843651 @default.
- W4380201984 hasConcept C2780167933 @default.
- W4380201984 hasConcept C2908916285 @default.
- W4380201984 hasConcept C3018284874 @default.
- W4380201984 hasConcept C41008148 @default.
- W4380201984 hasConcept C41895202 @default.
- W4380201984 hasConcept C555944384 @default.
- W4380201984 hasConcept C71924100 @default.
- W4380201984 hasConcept C76155785 @default.
- W4380201984 hasConcept C94915269 @default.
- W4380201984 hasConceptScore W4380201984C116390426 @default.
- W4380201984 hasConceptScore W4380201984C126322002 @default.
- W4380201984 hasConceptScore W4380201984C134652429 @default.
- W4380201984 hasConceptScore W4380201984C136229726 @default.
- W4380201984 hasConceptScore W4380201984C138885662 @default.
- W4380201984 hasConceptScore W4380201984C149635348 @default.
- W4380201984 hasConceptScore W4380201984C150594956 @default.
- W4380201984 hasConceptScore W4380201984C154945302 @default.
- W4380201984 hasConceptScore W4380201984C172321821 @default.
- W4380201984 hasConceptScore W4380201984C199360897 @default.
- W4380201984 hasConceptScore W4380201984C2776401178 @default.
- W4380201984 hasConceptScore W4380201984C2779134260 @default.
- W4380201984 hasConceptScore W4380201984C2779843651 @default.
- W4380201984 hasConceptScore W4380201984C2780167933 @default.
- W4380201984 hasConceptScore W4380201984C2908916285 @default.
- W4380201984 hasConceptScore W4380201984C3018284874 @default.
- W4380201984 hasConceptScore W4380201984C41008148 @default.
- W4380201984 hasConceptScore W4380201984C41895202 @default.
- W4380201984 hasConceptScore W4380201984C555944384 @default.
- W4380201984 hasConceptScore W4380201984C71924100 @default.
- W4380201984 hasConceptScore W4380201984C76155785 @default.
- W4380201984 hasConceptScore W4380201984C94915269 @default.
- W4380201984 hasFunder F4320321001 @default.
- W4380201984 hasFunder F4320321885 @default.
- W4380201984 hasLocation W43802019841 @default.
- W4380201984 hasLocation W43802019842 @default.
- W4380201984 hasOpenAccess W4380201984 @default.
- W4380201984 hasPrimaryLocation W43802019841 @default.
- W4380201984 hasRelatedWork W2120037269 @default.
- W4380201984 hasRelatedWork W2312670327 @default.
- W4380201984 hasRelatedWork W2382648635 @default.
- W4380201984 hasRelatedWork W2784576480 @default.