Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380237675> ?p ?o ?g. }
- W4380237675 abstract "Abstract The development of effective therapeutics and vaccines for human diseases requires a systematic understanding of human biology. While animal and in vitro culture models have successfully elucidated the molecular mechanisms of diseases in many studies, they yet fail to adequately recapitulate human biology as evidenced by the predominant likelihood of failure in clinical trials. To address this broadly important problem, we developed AutoTransOP, a neural network autoencoder framework to map omics profiles from designated species or cellular contexts into a global latent space, from which germane information can be mapped between different contexts. This approach performs as well or better than extant machine learning methods and can identify animal/culture-specific molecular features predictive of other contexts, without requiring homology matching. For an especially challenging test case, we successfully apply our framework to a set of inter-species vaccine serology studies, where no 1-1 mapping between human and non-human primate features exists." @default.
- W4380237675 created "2023-06-12" @default.
- W4380237675 creator A5011589130 @default.
- W4380237675 creator A5035602232 @default.
- W4380237675 creator A5060106170 @default.
- W4380237675 creator A5071548514 @default.
- W4380237675 creator A5073301822 @default.
- W4380237675 creator A5083645637 @default.
- W4380237675 date "2023-06-11" @default.
- W4380237675 modified "2023-10-16" @default.
- W4380237675 title "Autoencoder Model for Translating Omics Signatures" @default.
- W4380237675 cites W1556779599 @default.
- W4380237675 cites W2024421819 @default.
- W4380237675 cites W2028207904 @default.
- W4380237675 cites W2043398720 @default.
- W4380237675 cites W2076063813 @default.
- W4380237675 cites W2094791588 @default.
- W4380237675 cites W2101134811 @default.
- W4380237675 cites W2105208620 @default.
- W4380237675 cites W2133033238 @default.
- W4380237675 cites W2225391592 @default.
- W4380237675 cites W2248154415 @default.
- W4380237675 cites W2259632819 @default.
- W4380237675 cites W2472255748 @default.
- W4380237675 cites W2568475068 @default.
- W4380237675 cites W2606715885 @default.
- W4380237675 cites W2612467560 @default.
- W4380237675 cites W2765710211 @default.
- W4380237675 cites W2770808765 @default.
- W4380237675 cites W2825912598 @default.
- W4380237675 cites W2901139514 @default.
- W4380237675 cites W2901677030 @default.
- W4380237675 cites W2907514116 @default.
- W4380237675 cites W2909372163 @default.
- W4380237675 cites W2921591500 @default.
- W4380237675 cites W2951029718 @default.
- W4380237675 cites W2951381561 @default.
- W4380237675 cites W2951934944 @default.
- W4380237675 cites W2952016241 @default.
- W4380237675 cites W2964315448 @default.
- W4380237675 cites W2965552103 @default.
- W4380237675 cites W2972639591 @default.
- W4380237675 cites W2979595830 @default.
- W4380237675 cites W3005974663 @default.
- W4380237675 cites W3012989741 @default.
- W4380237675 cites W3034021666 @default.
- W4380237675 cites W3043344901 @default.
- W4380237675 cites W3047129750 @default.
- W4380237675 cites W3100287280 @default.
- W4380237675 cites W3174663170 @default.
- W4380237675 cites W3202423783 @default.
- W4380237675 cites W3204621757 @default.
- W4380237675 cites W3215119546 @default.
- W4380237675 cites W3216633781 @default.
- W4380237675 cites W4225610651 @default.
- W4380237675 cites W4299627282 @default.
- W4380237675 cites W4375955255 @default.
- W4380237675 cites W4376643505 @default.
- W4380237675 cites W4378838672 @default.
- W4380237675 doi "https://doi.org/10.1101/2023.06.08.544243" @default.
- W4380237675 hasPublicationYear "2023" @default.
- W4380237675 type Work @default.
- W4380237675 citedByCount "0" @default.
- W4380237675 crossrefType "posted-content" @default.
- W4380237675 hasAuthorship W4380237675A5011589130 @default.
- W4380237675 hasAuthorship W4380237675A5035602232 @default.
- W4380237675 hasAuthorship W4380237675A5060106170 @default.
- W4380237675 hasAuthorship W4380237675A5071548514 @default.
- W4380237675 hasAuthorship W4380237675A5073301822 @default.
- W4380237675 hasAuthorship W4380237675A5083645637 @default.
- W4380237675 hasBestOaLocation W43802376751 @default.
- W4380237675 hasConcept C101738243 @default.
- W4380237675 hasConcept C108583219 @default.
- W4380237675 hasConcept C119857082 @default.
- W4380237675 hasConcept C142724271 @default.
- W4380237675 hasConcept C154945302 @default.
- W4380237675 hasConcept C165064840 @default.
- W4380237675 hasConcept C177264268 @default.
- W4380237675 hasConcept C178300618 @default.
- W4380237675 hasConcept C199360897 @default.
- W4380237675 hasConcept C41008148 @default.
- W4380237675 hasConcept C70721500 @default.
- W4380237675 hasConcept C71924100 @default.
- W4380237675 hasConcept C78458016 @default.
- W4380237675 hasConcept C86803240 @default.
- W4380237675 hasConceptScore W4380237675C101738243 @default.
- W4380237675 hasConceptScore W4380237675C108583219 @default.
- W4380237675 hasConceptScore W4380237675C119857082 @default.
- W4380237675 hasConceptScore W4380237675C142724271 @default.
- W4380237675 hasConceptScore W4380237675C154945302 @default.
- W4380237675 hasConceptScore W4380237675C165064840 @default.
- W4380237675 hasConceptScore W4380237675C177264268 @default.
- W4380237675 hasConceptScore W4380237675C178300618 @default.
- W4380237675 hasConceptScore W4380237675C199360897 @default.
- W4380237675 hasConceptScore W4380237675C41008148 @default.
- W4380237675 hasConceptScore W4380237675C70721500 @default.
- W4380237675 hasConceptScore W4380237675C71924100 @default.
- W4380237675 hasConceptScore W4380237675C78458016 @default.
- W4380237675 hasConceptScore W4380237675C86803240 @default.
- W4380237675 hasLocation W43802376751 @default.