Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380272016> ?p ?o ?g. }
- W4380272016 endingPage "4452" @default.
- W4380272016 startingPage "4440" @default.
- W4380272016 abstract "Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.Dynamiske Globale Vegetasjonsmodeller (DGVM’er) er ledende prosessbaserte tilnaerminger til å forske på det komplekse samspillet mellom vegetasjonen og det fysiske miljøet. De kan, for eksempel, bidra til å simulere vekselvirkninger mellom planter og klima, jordsmonn, forstyrrelser og konkurranse om ressurser. Vi mener DGVM’er har ubrukt potensiale i økologisk og økofysiologisk forskning. Et grunnleggende problem er at mange forskere med relevant kompetanse (økologi, plantefysiologi, jordvitenskap osv.) ikke har tilgang til nødvendige tekniske ressurser eller god nok kjennskap til DGVM’er. Her presenterer vi en ny plattform for simuleringer av vegetasjon: Plattformen for lokal simulering av terrestrisk vegetasjon (“Land Sites Platform”; LSP). Plattformen utgjør ny programvare for lokale simuleringer med en avansert DGVM (“Functionally Assembled Terrestrial Ecosystem Simulator”; FATES) koblet til landoverflatemodellen “the Community Land Model” (CLM). LSP inkluderer et grafisk brukergrensesnitt og et programmeringsgrensesnitt for å forbedre brukeropplevelsen, samt å senke de tekniske tersklene for å installere modellen og sette opp modelleksperimenter. Programvaren distribueres via versjonskontrollerte, virtuelle datamaskiner. Forskere og studenter kan kjøre simuleringer direkte på sine personlige datamaskiner eller på servere, med relativt lave maskinvarekrav og på forskjellige operativsystemer. LSP versjon 1.0 støtter lokale simuleringer: Vi leverer forhåndsprosesserte data for 20 etablerte geoøkologiske lokaliteter i Norge og instruksjoner for å legge til generiske nye lokaliteter. LSP gjør modelleksperimenter med standarddata lett tilgjengelige, for eksempel i undervisning eller testing, samtidig som mulighetene til avansert, vitenskapelig bruk opprettholdes. Videre tilbyr vi verktøy for å visualisere data som driver modellen, modellens prediksjoner, og enkle eksempler der prediksjoner kan relateres til lokale observasjoner. LSP forbedrer tilgangen til landoverflate- og DGVM-modellering - en hjørnestein i inkluderende cyberinfrastruktur som kan inspirere til ny mekanistisk økosystemforskning på tvers av disipliner." @default.
- W4380272016 created "2023-06-12" @default.
- W4380272016 creator A5002121129 @default.
- W4380272016 creator A5005411619 @default.
- W4380272016 creator A5008248483 @default.
- W4380272016 creator A5010598856 @default.
- W4380272016 creator A5027311206 @default.
- W4380272016 creator A5028650242 @default.
- W4380272016 creator A5030397669 @default.
- W4380272016 creator A5031340668 @default.
- W4380272016 creator A5036716532 @default.
- W4380272016 creator A5038145266 @default.
- W4380272016 creator A5044293223 @default.
- W4380272016 creator A5047783540 @default.
- W4380272016 creator A5052184386 @default.
- W4380272016 creator A5055316736 @default.
- W4380272016 creator A5055621969 @default.
- W4380272016 creator A5058300660 @default.
- W4380272016 creator A5062293799 @default.
- W4380272016 creator A5067258202 @default.
- W4380272016 creator A5077240723 @default.
- W4380272016 creator A5078998825 @default.
- W4380272016 creator A5079954943 @default.
- W4380272016 creator A5080231261 @default.
- W4380272016 creator A5086559561 @default.
- W4380272016 creator A5092140635 @default.
- W4380272016 date "2023-06-11" @default.
- W4380272016 modified "2023-10-01" @default.
- W4380272016 title "Climate–ecosystem modelling made easy: The Land Sites Platform" @default.
- W4380272016 cites W1209269186 @default.
- W4380272016 cites W1949051345 @default.
- W4380272016 cites W2044797544 @default.
- W4380272016 cites W2064427865 @default.
- W4380272016 cites W2084137473 @default.
- W4380272016 cites W2125267982 @default.
- W4380272016 cites W2134075812 @default.
- W4380272016 cites W2141551695 @default.
- W4380272016 cites W2163082210 @default.
- W4380272016 cites W2302501749 @default.
- W4380272016 cites W2515706791 @default.
- W4380272016 cites W2621815179 @default.
- W4380272016 cites W2755793808 @default.
- W4380272016 cites W2785697432 @default.
- W4380272016 cites W2786425804 @default.
- W4380272016 cites W2807487990 @default.
- W4380272016 cites W2897957760 @default.
- W4380272016 cites W2981104727 @default.
- W4380272016 cites W2998885490 @default.
- W4380272016 cites W2999794056 @default.
- W4380272016 cites W3011056298 @default.
- W4380272016 cites W3102028509 @default.
- W4380272016 cites W3125199177 @default.
- W4380272016 cites W3125556670 @default.
- W4380272016 cites W3161114443 @default.
- W4380272016 cites W3199316380 @default.
- W4380272016 cites W3200145679 @default.
- W4380272016 cites W3210961922 @default.
- W4380272016 cites W4205264383 @default.
- W4380272016 cites W4214705618 @default.
- W4380272016 cites W4282981213 @default.
- W4380272016 cites W861267465 @default.
- W4380272016 doi "https://doi.org/10.1111/gcb.16808" @default.
- W4380272016 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37303068" @default.
- W4380272016 hasPublicationYear "2023" @default.
- W4380272016 type Work @default.
- W4380272016 citedByCount "0" @default.
- W4380272016 crossrefType "journal-article" @default.
- W4380272016 hasAuthorship W4380272016A5002121129 @default.
- W4380272016 hasAuthorship W4380272016A5005411619 @default.
- W4380272016 hasAuthorship W4380272016A5008248483 @default.
- W4380272016 hasAuthorship W4380272016A5010598856 @default.
- W4380272016 hasAuthorship W4380272016A5027311206 @default.
- W4380272016 hasAuthorship W4380272016A5028650242 @default.
- W4380272016 hasAuthorship W4380272016A5030397669 @default.
- W4380272016 hasAuthorship W4380272016A5031340668 @default.
- W4380272016 hasAuthorship W4380272016A5036716532 @default.
- W4380272016 hasAuthorship W4380272016A5038145266 @default.
- W4380272016 hasAuthorship W4380272016A5044293223 @default.
- W4380272016 hasAuthorship W4380272016A5047783540 @default.
- W4380272016 hasAuthorship W4380272016A5052184386 @default.
- W4380272016 hasAuthorship W4380272016A5055316736 @default.
- W4380272016 hasAuthorship W4380272016A5055621969 @default.
- W4380272016 hasAuthorship W4380272016A5058300660 @default.
- W4380272016 hasAuthorship W4380272016A5062293799 @default.
- W4380272016 hasAuthorship W4380272016A5067258202 @default.
- W4380272016 hasAuthorship W4380272016A5077240723 @default.
- W4380272016 hasAuthorship W4380272016A5078998825 @default.
- W4380272016 hasAuthorship W4380272016A5079954943 @default.
- W4380272016 hasAuthorship W4380272016A5080231261 @default.
- W4380272016 hasAuthorship W4380272016A5086559561 @default.
- W4380272016 hasAuthorship W4380272016A5092140635 @default.
- W4380272016 hasBestOaLocation W43802720161 @default.
- W4380272016 hasConcept C105795698 @default.
- W4380272016 hasConcept C107457646 @default.
- W4380272016 hasConcept C111919701 @default.
- W4380272016 hasConcept C113843644 @default.
- W4380272016 hasConcept C115903868 @default.
- W4380272016 hasConcept C120314980 @default.