Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380291272> ?p ?o ?g. }
- W4380291272 endingPage "21" @default.
- W4380291272 startingPage "1" @default.
- W4380291272 abstract "In safety-critical automatic systems, safety can be compromised if operators lack engagement. Effective detection of undesirable engagement states can inform the design of interventions for enhancing engagement. However, the existing engagement measurement methods suffer from several limitations which damage their effectiveness in the work environment. A novel engagement evaluation methodology, which adopts Artificial Intelligence (AI) technologies, has been proposed. It was developed using motorway control room operators as subjects. Openpose and Open Source Computer Vision Library (OpenCV) were used to estimate the body postures of operators, then a Support Vector Machine (SVM) was utilised to build the engagement evaluation model based on discrete states of operator engagement. The average accuracy of the evaluation results reached 0.89 and the weighted average precision, recall, and F1-score were all above 0.84. This study emphasises the importance of specific data labelling when measuring typical engagement states, forming the basis for potential control room improvements.Practitioner summary: This study demonstrates an automatic, real-time, objective, and relatively unobtrusive method for measuring dynamic operator engagement states. Computer vision technologies were used to estimate body posture, then machine learning (ML) was utilised to build the engagement evaluation model. The overall evaluation shows the effectiveness of this framework.Abbreviations: AI: Artificial Intelligence; OpenCV: Open Source Computer Vision Library; SVM: Support Vector Machine; UWES: Utrecht Work Engagement Scale; ISA Engagement Scale: Intellectual, Social, Affective Engagement Scale; DSSQ: Dundee Stress State Questionnaire; SSSQ: Short Stress State Questionnaire; EEG: electroencephalography; ECG: Electrocardiography; VMOE: Video-based Measurement for Operator Engagement; CMU: Carnegie Mellon University; CNN: Convolutional Neural Network; 2D: two dimensional; ML: Machine learning." @default.
- W4380291272 created "2023-06-13" @default.
- W4380291272 creator A5004174221 @default.
- W4380291272 creator A5019997141 @default.
- W4380291272 creator A5030813365 @default.
- W4380291272 creator A5062244616 @default.
- W4380291272 date "2023-06-27" @default.
- W4380291272 modified "2023-09-26" @default.
- W4380291272 title "A Video Processing and Machine Learning Based Method for Evaluating Safety-Critical Operator Engagement in a Motorway Control Room" @default.
- W4380291272 cites W1207835742 @default.
- W4380291272 cites W1499720228 @default.
- W4380291272 cites W1902610065 @default.
- W4380291272 cites W1964677884 @default.
- W4380291272 cites W1979290264 @default.
- W4380291272 cites W1982135085 @default.
- W4380291272 cites W1997858829 @default.
- W4380291272 cites W1998097812 @default.
- W4380291272 cites W1998969635 @default.
- W4380291272 cites W2000507184 @default.
- W4380291272 cites W2008683619 @default.
- W4380291272 cites W2012707314 @default.
- W4380291272 cites W2017427280 @default.
- W4380291272 cites W2025326840 @default.
- W4380291272 cites W2032778084 @default.
- W4380291272 cites W2060662742 @default.
- W4380291272 cites W2073183165 @default.
- W4380291272 cites W2086697311 @default.
- W4380291272 cites W2087111243 @default.
- W4380291272 cites W2090768162 @default.
- W4380291272 cites W2098705770 @default.
- W4380291272 cites W2105410877 @default.
- W4380291272 cites W2114651797 @default.
- W4380291272 cites W2115193405 @default.
- W4380291272 cites W2124726634 @default.
- W4380291272 cites W2132680170 @default.
- W4380291272 cites W2132989691 @default.
- W4380291272 cites W2155893237 @default.
- W4380291272 cites W2161855103 @default.
- W4380291272 cites W2165208285 @default.
- W4380291272 cites W2167712474 @default.
- W4380291272 cites W2170043702 @default.
- W4380291272 cites W2172273046 @default.
- W4380291272 cites W2224343096 @default.
- W4380291272 cites W2293900810 @default.
- W4380291272 cites W2366977270 @default.
- W4380291272 cites W2500511706 @default.
- W4380291272 cites W2533823203 @default.
- W4380291272 cites W2782922652 @default.
- W4380291272 cites W2791574418 @default.
- W4380291272 cites W2796907253 @default.
- W4380291272 cites W2809104799 @default.
- W4380291272 cites W2897333945 @default.
- W4380291272 cites W2898176471 @default.
- W4380291272 cites W2902751829 @default.
- W4380291272 cites W2907858232 @default.
- W4380291272 cites W2912874308 @default.
- W4380291272 cites W2957765408 @default.
- W4380291272 cites W2962730651 @default.
- W4380291272 cites W2964593850 @default.
- W4380291272 cites W2975376327 @default.
- W4380291272 cites W2980547949 @default.
- W4380291272 cites W2981277226 @default.
- W4380291272 cites W2985305798 @default.
- W4380291272 cites W2995682556 @default.
- W4380291272 cites W2999863666 @default.
- W4380291272 cites W3001362559 @default.
- W4380291272 cites W3013012339 @default.
- W4380291272 cites W3013559083 @default.
- W4380291272 cites W3019913914 @default.
- W4380291272 cites W3040864776 @default.
- W4380291272 cites W3044894888 @default.
- W4380291272 cites W3088409505 @default.
- W4380291272 cites W3092194021 @default.
- W4380291272 cites W3104119924 @default.
- W4380291272 cites W3129459589 @default.
- W4380291272 cites W3132001058 @default.
- W4380291272 cites W3132279356 @default.
- W4380291272 cites W3168921462 @default.
- W4380291272 cites W3169274599 @default.
- W4380291272 cites W3185929914 @default.
- W4380291272 cites W3195378400 @default.
- W4380291272 cites W3200771454 @default.
- W4380291272 cites W4220691135 @default.
- W4380291272 cites W4226165994 @default.
- W4380291272 cites W4253470853 @default.
- W4380291272 cites W4282931570 @default.
- W4380291272 cites W4285019164 @default.
- W4380291272 cites W4285061853 @default.
- W4380291272 cites W4300688448 @default.
- W4380291272 doi "https://doi.org/10.1080/00140139.2023.2223784" @default.
- W4380291272 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37306555" @default.
- W4380291272 hasPublicationYear "2023" @default.
- W4380291272 type Work @default.
- W4380291272 citedByCount "0" @default.
- W4380291272 crossrefType "journal-article" @default.
- W4380291272 hasAuthorship W4380291272A5004174221 @default.
- W4380291272 hasAuthorship W4380291272A5019997141 @default.
- W4380291272 hasAuthorship W4380291272A5030813365 @default.