Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380302022> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4380302022 endingPage "980" @default.
- W4380302022 startingPage "971" @default.
- W4380302022 abstract "The abundance of social media data in the Arab world, specifically on Twitter, enabled companies and entities to exploit such rich and beneficial data that could be mined and used to extract important information, including sentiments and opinions of people towards a topic or a merchandise. However, with this plenitude comes the issue of producing models that are able to deliver consistent outcomes when tested within various contexts. Although model generalization has been thoroughly investigated in many fields, it has not been heavily investigated in the Arabic context. To address this gap, we investigate the generalization of models and data in Arabic with application to sentiment analysis, by performing a battery of experiments and building different models that are tested on five independent test sets to understand their performance when presented with unseen data. In doing so, we detail different techniques that improve the generalization of machine learning models in Arabic sentiment analysis, and share a large versatile dataset consisting of approximately 1.64M Arabic tweets and their corresponding sentiment to be used for future research. Our experiments concluded that the most consistent model is trained using a dataset labelled by a cascaded approach of two models, one that labels neutral tweets and another that identifies positive/negative tweets based on the Arabic emoji lexicon after class balancing. Both the BERT and the SVM models trained using the refined data achieve an average F-1 score of 0.62 and 0.60, and standard deviation of 0.06 and 0.04 respectively, when evaluated on five diverse test sets, outperforming other models by at least 17% relative gain in F-1. Based on our experiments, we share recommendations to improve model generalization for classification tasks." @default.
- W4380302022 created "2023-06-13" @default.
- W4380302022 creator A5029823776 @default.
- W4380302022 creator A5034748660 @default.
- W4380302022 creator A5047182137 @default.
- W4380302022 creator A5092142310 @default.
- W4380302022 date "2023-06-02" @default.
- W4380302022 modified "2023-10-06" @default.
- W4380302022 title "Towards Generalization of Machine Learning Models: A Case Study of Arabic Sentiment Analysis" @default.
- W4380302022 doi "https://doi.org/10.1609/icwsm.v17i1.22204" @default.
- W4380302022 hasPublicationYear "2023" @default.
- W4380302022 type Work @default.
- W4380302022 citedByCount "0" @default.
- W4380302022 crossrefType "journal-article" @default.
- W4380302022 hasAuthorship W4380302022A5029823776 @default.
- W4380302022 hasAuthorship W4380302022A5034748660 @default.
- W4380302022 hasAuthorship W4380302022A5047182137 @default.
- W4380302022 hasAuthorship W4380302022A5092142310 @default.
- W4380302022 hasBestOaLocation W43803020221 @default.
- W4380302022 hasConcept C119857082 @default.
- W4380302022 hasConcept C12267149 @default.
- W4380302022 hasConcept C134306372 @default.
- W4380302022 hasConcept C136764020 @default.
- W4380302022 hasConcept C138885662 @default.
- W4380302022 hasConcept C151730666 @default.
- W4380302022 hasConcept C154945302 @default.
- W4380302022 hasConcept C165696696 @default.
- W4380302022 hasConcept C177148314 @default.
- W4380302022 hasConcept C204321447 @default.
- W4380302022 hasConcept C2778121359 @default.
- W4380302022 hasConcept C2778243841 @default.
- W4380302022 hasConcept C2779247141 @default.
- W4380302022 hasConcept C2779343474 @default.
- W4380302022 hasConcept C33923547 @default.
- W4380302022 hasConcept C38652104 @default.
- W4380302022 hasConcept C41008148 @default.
- W4380302022 hasConcept C41895202 @default.
- W4380302022 hasConcept C518677369 @default.
- W4380302022 hasConcept C66402592 @default.
- W4380302022 hasConcept C86803240 @default.
- W4380302022 hasConcept C96455323 @default.
- W4380302022 hasConceptScore W4380302022C119857082 @default.
- W4380302022 hasConceptScore W4380302022C12267149 @default.
- W4380302022 hasConceptScore W4380302022C134306372 @default.
- W4380302022 hasConceptScore W4380302022C136764020 @default.
- W4380302022 hasConceptScore W4380302022C138885662 @default.
- W4380302022 hasConceptScore W4380302022C151730666 @default.
- W4380302022 hasConceptScore W4380302022C154945302 @default.
- W4380302022 hasConceptScore W4380302022C165696696 @default.
- W4380302022 hasConceptScore W4380302022C177148314 @default.
- W4380302022 hasConceptScore W4380302022C204321447 @default.
- W4380302022 hasConceptScore W4380302022C2778121359 @default.
- W4380302022 hasConceptScore W4380302022C2778243841 @default.
- W4380302022 hasConceptScore W4380302022C2779247141 @default.
- W4380302022 hasConceptScore W4380302022C2779343474 @default.
- W4380302022 hasConceptScore W4380302022C33923547 @default.
- W4380302022 hasConceptScore W4380302022C38652104 @default.
- W4380302022 hasConceptScore W4380302022C41008148 @default.
- W4380302022 hasConceptScore W4380302022C41895202 @default.
- W4380302022 hasConceptScore W4380302022C518677369 @default.
- W4380302022 hasConceptScore W4380302022C66402592 @default.
- W4380302022 hasConceptScore W4380302022C86803240 @default.
- W4380302022 hasConceptScore W4380302022C96455323 @default.
- W4380302022 hasLocation W43803020221 @default.
- W4380302022 hasOpenAccess W4380302022 @default.
- W4380302022 hasPrimaryLocation W43803020221 @default.
- W4380302022 hasRelatedWork W2057854333 @default.
- W4380302022 hasRelatedWork W2295178230 @default.
- W4380302022 hasRelatedWork W2346975490 @default.
- W4380302022 hasRelatedWork W2577454849 @default.
- W4380302022 hasRelatedWork W2770617756 @default.
- W4380302022 hasRelatedWork W2783003676 @default.
- W4380302022 hasRelatedWork W2793625747 @default.
- W4380302022 hasRelatedWork W2804438185 @default.
- W4380302022 hasRelatedWork W3016055861 @default.
- W4380302022 hasRelatedWork W4386566330 @default.
- W4380302022 hasVolume "17" @default.
- W4380302022 isParatext "false" @default.
- W4380302022 isRetracted "false" @default.
- W4380302022 workType "article" @default.