Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380303652> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4380303652 endingPage "12" @default.
- W4380303652 startingPage "1" @default.
- W4380303652 abstract "Automatic nuclei segmentation and classification play a vital role in digital pathology. However, previous works are mostly built on data with limited diversity and small sizes, making the results questionable or misleading in actual downstream tasks. In this article, we aim to build a reliable and robust method capable of dealing with data from the ‘the clinical wild’. Specifically, we study and design a new method to simultaneously detect, segment, and classify nuclei from Haematoxylin and Eosin (H&E) stained histopathology data, and evaluate our approach using the recent largest dataset: PanNuke. We address the detection and classification of each nuclei as a novel semantic keypoint estimation problem to determine the center point of each nuclei. Next, the corresponding class-agnostic masks for nuclei center points are obtained using dynamic instance segmentation. Meanwhile, we proposed a novel Joint Pyramid Fusion Module (JPFM) to model the cross-scale dependencies, thus enhancing the local feature for better nuclei detection and classification. By decoupling two simultaneous challenging tasks and taking advantage of JPFM, our method can benefit from class-aware detection and class-agnostic segmentation, thus leading to a significant performance boost. We demonstrate the superior performance of our proposed approach for nuclei segmentation and classification across 19 different tissue types, delivering new benchmark results." @default.
- W4380303652 created "2023-06-13" @default.
- W4380303652 creator A5026022035 @default.
- W4380303652 creator A5031293218 @default.
- W4380303652 creator A5047420717 @default.
- W4380303652 creator A5057037690 @default.
- W4380303652 date "2023-01-01" @default.
- W4380303652 modified "2023-10-16" @default.
- W4380303652 title "PointNu-Net: Keypoint-Assisted Convolutional Neural Network for Simultaneous Multi-Tissue Histology Nuclei Segmentation and Classification" @default.
- W4380303652 doi "https://doi.org/10.1109/tetci.2023.3281864" @default.
- W4380303652 hasPublicationYear "2023" @default.
- W4380303652 type Work @default.
- W4380303652 citedByCount "0" @default.
- W4380303652 crossrefType "journal-article" @default.
- W4380303652 hasAuthorship W4380303652A5026022035 @default.
- W4380303652 hasAuthorship W4380303652A5031293218 @default.
- W4380303652 hasAuthorship W4380303652A5047420717 @default.
- W4380303652 hasAuthorship W4380303652A5057037690 @default.
- W4380303652 hasConcept C142724271 @default.
- W4380303652 hasConcept C153180895 @default.
- W4380303652 hasConcept C154945302 @default.
- W4380303652 hasConcept C185798385 @default.
- W4380303652 hasConcept C205649164 @default.
- W4380303652 hasConcept C2777522853 @default.
- W4380303652 hasConcept C2779751288 @default.
- W4380303652 hasConcept C41008148 @default.
- W4380303652 hasConcept C58640448 @default.
- W4380303652 hasConcept C71924100 @default.
- W4380303652 hasConcept C74864618 @default.
- W4380303652 hasConcept C81363708 @default.
- W4380303652 hasConcept C89600930 @default.
- W4380303652 hasConceptScore W4380303652C142724271 @default.
- W4380303652 hasConceptScore W4380303652C153180895 @default.
- W4380303652 hasConceptScore W4380303652C154945302 @default.
- W4380303652 hasConceptScore W4380303652C185798385 @default.
- W4380303652 hasConceptScore W4380303652C205649164 @default.
- W4380303652 hasConceptScore W4380303652C2777522853 @default.
- W4380303652 hasConceptScore W4380303652C2779751288 @default.
- W4380303652 hasConceptScore W4380303652C41008148 @default.
- W4380303652 hasConceptScore W4380303652C58640448 @default.
- W4380303652 hasConceptScore W4380303652C71924100 @default.
- W4380303652 hasConceptScore W4380303652C74864618 @default.
- W4380303652 hasConceptScore W4380303652C81363708 @default.
- W4380303652 hasConceptScore W4380303652C89600930 @default.
- W4380303652 hasFunder F4320322769 @default.
- W4380303652 hasFunder F4320334627 @default.
- W4380303652 hasLocation W43803036521 @default.
- W4380303652 hasOpenAccess W4380303652 @default.
- W4380303652 hasPrimaryLocation W43803036521 @default.
- W4380303652 hasRelatedWork W2175746458 @default.
- W4380303652 hasRelatedWork W2769435486 @default.
- W4380303652 hasRelatedWork W2949389737 @default.
- W4380303652 hasRelatedWork W2963556241 @default.
- W4380303652 hasRelatedWork W3018421652 @default.
- W4380303652 hasRelatedWork W3093612317 @default.
- W4380303652 hasRelatedWork W3102253946 @default.
- W4380303652 hasRelatedWork W4200528772 @default.
- W4380303652 hasRelatedWork W4293211451 @default.
- W4380303652 hasRelatedWork W4308191152 @default.
- W4380303652 isParatext "false" @default.
- W4380303652 isRetracted "false" @default.
- W4380303652 workType "article" @default.