Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380317846> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4380317846 endingPage "109292" @default.
- W4380317846 startingPage "109292" @default.
- W4380317846 abstract "Multi-agent deep reinforcement learning (MA-DRL) method provides a groundbreaking approach to tackling computational problems in power systems, particularly for distributed energy resources that have been widely adopted to advance energy sustainability. This paper presents a novel optimal energy management based on proposed MA-DRL method. This method employs deep neural network to learn strategy based on stacked-denoising auto-encoders and multi-agent deep deterministic policy gradient learning capability. The MA-DRL method is adopted to find the optimal strategy of the optimal energy management problem under the Markov decision process framework. This method aims to coordinate multiple energies and achieve optimal operation over a variety of hourly dispatches while taking into account the distinct properties of electric and thermal energies. The primary challenge of the planning and operation of multiple energy carrier microgrids (MECMs) is determining the optimal interaction between renewable energy resources, energy storage systems, power-to-thermal conversion systems, and upstream power grid in order to improve overall energy utilization efficiency. The presented robust method can adaptively derive the optimal operation for MECMs through centralized learning and decentralized implementation. The optimization problem is employed in this study to concurrently reduce the total emissions and the operating costs while considering engineering design constraints. Finally, to demonstrate the efficiency of the proposed method, it is verified on an integrated modified IEEE 33-bus and 8-node gas systems." @default.
- W4380317846 created "2023-06-13" @default.
- W4380317846 creator A5026177819 @default.
- W4380317846 creator A5033999385 @default.
- W4380317846 creator A5035300094 @default.
- W4380317846 date "2023-11-01" @default.
- W4380317846 modified "2023-09-27" @default.
- W4380317846 title "Multi-agent deep reinforcement learning-based optimal energy management for grid-connected multiple energy carrier microgrids" @default.
- W4380317846 cites W1630598973 @default.
- W4380317846 cites W1996867411 @default.
- W4380317846 cites W2078323568 @default.
- W4380317846 cites W2082127930 @default.
- W4380317846 cites W2145761514 @default.
- W4380317846 cites W2159088483 @default.
- W4380317846 cites W2170775348 @default.
- W4380317846 cites W2743231053 @default.
- W4380317846 cites W2788179786 @default.
- W4380317846 cites W2790816744 @default.
- W4380317846 cites W2795578496 @default.
- W4380317846 cites W2915446925 @default.
- W4380317846 cites W2920627430 @default.
- W4380317846 cites W3005785515 @default.
- W4380317846 cites W3009018545 @default.
- W4380317846 cites W3034924128 @default.
- W4380317846 cites W3064890368 @default.
- W4380317846 cites W3135797467 @default.
- W4380317846 cites W3139395991 @default.
- W4380317846 cites W3147639000 @default.
- W4380317846 cites W3154189733 @default.
- W4380317846 cites W3157620715 @default.
- W4380317846 cites W3163136228 @default.
- W4380317846 cites W3199571765 @default.
- W4380317846 cites W3204976783 @default.
- W4380317846 cites W32403112 @default.
- W4380317846 cites W4299564007 @default.
- W4380317846 cites W4320169634 @default.
- W4380317846 cites W4362610470 @default.
- W4380317846 doi "https://doi.org/10.1016/j.ijepes.2023.109292" @default.
- W4380317846 hasPublicationYear "2023" @default.
- W4380317846 type Work @default.
- W4380317846 citedByCount "0" @default.
- W4380317846 crossrefType "journal-article" @default.
- W4380317846 hasAuthorship W4380317846A5026177819 @default.
- W4380317846 hasAuthorship W4380317846A5033999385 @default.
- W4380317846 hasAuthorship W4380317846A5035300094 @default.
- W4380317846 hasConcept C105795698 @default.
- W4380317846 hasConcept C106189395 @default.
- W4380317846 hasConcept C119599485 @default.
- W4380317846 hasConcept C120314980 @default.
- W4380317846 hasConcept C126255220 @default.
- W4380317846 hasConcept C127413603 @default.
- W4380317846 hasConcept C154945302 @default.
- W4380317846 hasConcept C159886148 @default.
- W4380317846 hasConcept C186370098 @default.
- W4380317846 hasConcept C187691185 @default.
- W4380317846 hasConcept C188573790 @default.
- W4380317846 hasConcept C2524010 @default.
- W4380317846 hasConcept C33923547 @default.
- W4380317846 hasConcept C41008148 @default.
- W4380317846 hasConcept C50644808 @default.
- W4380317846 hasConcept C544738498 @default.
- W4380317846 hasConcept C7817414 @default.
- W4380317846 hasConcept C97541855 @default.
- W4380317846 hasConceptScore W4380317846C105795698 @default.
- W4380317846 hasConceptScore W4380317846C106189395 @default.
- W4380317846 hasConceptScore W4380317846C119599485 @default.
- W4380317846 hasConceptScore W4380317846C120314980 @default.
- W4380317846 hasConceptScore W4380317846C126255220 @default.
- W4380317846 hasConceptScore W4380317846C127413603 @default.
- W4380317846 hasConceptScore W4380317846C154945302 @default.
- W4380317846 hasConceptScore W4380317846C159886148 @default.
- W4380317846 hasConceptScore W4380317846C186370098 @default.
- W4380317846 hasConceptScore W4380317846C187691185 @default.
- W4380317846 hasConceptScore W4380317846C188573790 @default.
- W4380317846 hasConceptScore W4380317846C2524010 @default.
- W4380317846 hasConceptScore W4380317846C33923547 @default.
- W4380317846 hasConceptScore W4380317846C41008148 @default.
- W4380317846 hasConceptScore W4380317846C50644808 @default.
- W4380317846 hasConceptScore W4380317846C544738498 @default.
- W4380317846 hasConceptScore W4380317846C7817414 @default.
- W4380317846 hasConceptScore W4380317846C97541855 @default.
- W4380317846 hasLocation W43803178461 @default.
- W4380317846 hasOpenAccess W4380317846 @default.
- W4380317846 hasPrimaryLocation W43803178461 @default.
- W4380317846 hasRelatedWork W1596201972 @default.
- W4380317846 hasRelatedWork W2043789664 @default.
- W4380317846 hasRelatedWork W2160425906 @default.
- W4380317846 hasRelatedWork W2367503426 @default.
- W4380317846 hasRelatedWork W2380963126 @default.
- W4380317846 hasRelatedWork W3213838085 @default.
- W4380317846 hasRelatedWork W4313591620 @default.
- W4380317846 hasRelatedWork W4361186094 @default.
- W4380317846 hasRelatedWork W2466597139 @default.
- W4380317846 hasRelatedWork W2805391225 @default.
- W4380317846 hasVolume "153" @default.
- W4380317846 isParatext "false" @default.
- W4380317846 isRetracted "false" @default.
- W4380317846 workType "article" @default.