Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380344041> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4380344041 endingPage "3834" @default.
- W4380344041 startingPage "3796" @default.
- W4380344041 abstract "Abstract This paper deals with global asymptotic behaviour of the dynamics for N -dimensional type- K competitive Kolmogorov systems of differential equations defined in the first orthant. It is known that the backward dynamics of such systems is type- K monotone. Assuming the system is dissipative and the origin is a repeller, it is proved that there exists a compact invariant set Σ which separates the basin of repulsion of the origin and the basin of repulsion of infinity and attracts all the non-trivial orbits. There are two closed sets S H and S V , their restriction to the interior of the first orthant are <?CDATA $(N-1)$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mo stretchy=false>(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:math> -dimensional hypersurfaces, such that the asymptotic dynamics of the type-K system in the first orthant can be described by a system on either S H or S V : each trajectory in the interior of the first orthant is asymptotic to one in S H and one in S V . Geometric and asymptotic features of the global attractor Σ are investigated. It is proved that the partition <?CDATA $Sigma = Sigma_HcupSigma_0cupSigma_V$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi mathvariant=normal>Σ</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi mathvariant=normal>Σ</mml:mi> <mml:mi>H</mml:mi> </mml:msub> <mml:mo>∪</mml:mo> <mml:msub> <mml:mi mathvariant=normal>Σ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>∪</mml:mo> <mml:msub> <mml:mi mathvariant=normal>Σ</mml:mi> <mml:mi>V</mml:mi> </mml:msub> </mml:math> holds such that <?CDATA $Sigma_HcupSigma_0subset S_H$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:msub> <mml:mi mathvariant=normal>Σ</mml:mi> <mml:mi>H</mml:mi> </mml:msub> <mml:mo>∪</mml:mo> <mml:msub> <mml:mi mathvariant=normal>Σ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>⊂</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>H</mml:mi> </mml:msub> </mml:math> and <?CDATA $Sigma_VcupSigma_0subset S_V$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:msub> <mml:mi mathvariant=normal>Σ</mml:mi> <mml:mi>V</mml:mi> </mml:msub> <mml:mo>∪</mml:mo> <mml:msub> <mml:mi mathvariant=normal>Σ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>⊂</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>V</mml:mi> </mml:msub> </mml:math> . Thus, Σ 0 contains all the ω -limit sets for all interior trajectories of any type- K subsystems and the closure <?CDATA $overline{Sigma_HcupSigma_V}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mover> <mml:mrow> <mml:msub> <mml:mi mathvariant=normal>Σ</mml:mi> <mml:mi>H</mml:mi> </mml:msub> <mml:mo>∪</mml:mo> <mml:msub> <mml:mi mathvariant=normal>Σ</mml:mi> <mml:mi>V</mml:mi> </mml:msub> </mml:mrow> <mml:mo accent=false>‾</mml:mo> </mml:mover> </mml:math> as a subset of Σ is invariant and the upper boundary of the basin of repulsion of the origin. This Σ has the same asymptotic feature as the modified carrying simplex for a competitive system: every nontrivial trajectory below Σ is asymptotic to one in Σ and the ω -limit set is in Σ for every other nontrivial trajectory." @default.
- W4380344041 created "2023-06-13" @default.
- W4380344041 creator A5027774390 @default.
- W4380344041 date "2023-06-13" @default.
- W4380344041 modified "2023-09-26" @default.
- W4380344041 title "On global dynamics of type-K competitive Kolmogorov differential systems" @default.
- W4380344041 cites W1110713045 @default.
- W4380344041 cites W1598966342 @default.
- W4380344041 cites W1604961075 @default.
- W4380344041 cites W1737593750 @default.
- W4380344041 cites W1755935064 @default.
- W4380344041 cites W1964604300 @default.
- W4380344041 cites W1974884074 @default.
- W4380344041 cites W1995033071 @default.
- W4380344041 cites W2002555690 @default.
- W4380344041 cites W2008670672 @default.
- W4380344041 cites W2008841427 @default.
- W4380344041 cites W2016812333 @default.
- W4380344041 cites W2016897079 @default.
- W4380344041 cites W2019312821 @default.
- W4380344041 cites W2021815153 @default.
- W4380344041 cites W2024869477 @default.
- W4380344041 cites W2028747147 @default.
- W4380344041 cites W2029273851 @default.
- W4380344041 cites W2034396088 @default.
- W4380344041 cites W2058410508 @default.
- W4380344041 cites W2059695214 @default.
- W4380344041 cites W2063910457 @default.
- W4380344041 cites W2067199903 @default.
- W4380344041 cites W2067991466 @default.
- W4380344041 cites W2069850422 @default.
- W4380344041 cites W2072392883 @default.
- W4380344041 cites W2077278798 @default.
- W4380344041 cites W2083090359 @default.
- W4380344041 cites W2090279270 @default.
- W4380344041 cites W2112199883 @default.
- W4380344041 cites W2129063142 @default.
- W4380344041 cites W2165565577 @default.
- W4380344041 cites W2166127999 @default.
- W4380344041 cites W2167255838 @default.
- W4380344041 cites W2303124222 @default.
- W4380344041 cites W2328460622 @default.
- W4380344041 cites W2519384472 @default.
- W4380344041 cites W2750573223 @default.
- W4380344041 cites W2902229359 @default.
- W4380344041 cites W2963196877 @default.
- W4380344041 cites W3081253845 @default.
- W4380344041 cites W3133932271 @default.
- W4380344041 cites W3208412211 @default.
- W4380344041 doi "https://doi.org/10.1088/1361-6544/acda77" @default.
- W4380344041 hasPublicationYear "2023" @default.
- W4380344041 type Work @default.
- W4380344041 citedByCount "0" @default.
- W4380344041 crossrefType "journal-article" @default.
- W4380344041 hasAuthorship W4380344041A5027774390 @default.
- W4380344041 hasConcept C11413529 @default.
- W4380344041 hasConcept C114614502 @default.
- W4380344041 hasConcept C127313418 @default.
- W4380344041 hasConcept C134306372 @default.
- W4380344041 hasConcept C151730666 @default.
- W4380344041 hasConcept C164380108 @default.
- W4380344041 hasConcept C2524010 @default.
- W4380344041 hasConcept C2777299769 @default.
- W4380344041 hasConcept C2780016784 @default.
- W4380344041 hasConcept C33923547 @default.
- W4380344041 hasConceptScore W4380344041C11413529 @default.
- W4380344041 hasConceptScore W4380344041C114614502 @default.
- W4380344041 hasConceptScore W4380344041C127313418 @default.
- W4380344041 hasConceptScore W4380344041C134306372 @default.
- W4380344041 hasConceptScore W4380344041C151730666 @default.
- W4380344041 hasConceptScore W4380344041C164380108 @default.
- W4380344041 hasConceptScore W4380344041C2524010 @default.
- W4380344041 hasConceptScore W4380344041C2777299769 @default.
- W4380344041 hasConceptScore W4380344041C2780016784 @default.
- W4380344041 hasConceptScore W4380344041C33923547 @default.
- W4380344041 hasIssue "7" @default.
- W4380344041 hasLocation W43803440411 @default.
- W4380344041 hasOpenAccess W4380344041 @default.
- W4380344041 hasPrimaryLocation W43803440411 @default.
- W4380344041 hasRelatedWork W1490070682 @default.
- W4380344041 hasRelatedWork W1978042415 @default.
- W4380344041 hasRelatedWork W1982845430 @default.
- W4380344041 hasRelatedWork W2017331178 @default.
- W4380344041 hasRelatedWork W2349865494 @default.
- W4380344041 hasRelatedWork W2372553222 @default.
- W4380344041 hasRelatedWork W2761493891 @default.
- W4380344041 hasRelatedWork W2976797620 @default.
- W4380344041 hasRelatedWork W3086542228 @default.
- W4380344041 hasRelatedWork W4207012839 @default.
- W4380344041 hasVolume "36" @default.
- W4380344041 isParatext "false" @default.
- W4380344041 isRetracted "false" @default.
- W4380344041 workType "article" @default.