Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380358694> ?p ?o ?g. }
- W4380358694 endingPage "3139" @default.
- W4380358694 startingPage "3139" @default.
- W4380358694 abstract "Breast cancer is the second-leading cause of mortality among women around the world. Ultrasound (US) is one of the noninvasive imaging modalities used to diagnose breast lesions and monitor the prognosis of cancer patients. It has the highest sensitivity for diagnosing breast masses, but it shows increased false negativity due to its high operator dependency. Underserved areas do not have sufficient US expertise to diagnose breast lesions, resulting in delayed management of breast lesions. Deep learning neural networks may have the potential to facilitate early decision-making by physicians by rapidly yet accurately diagnosing and monitoring their prognosis. This article reviews the recent research trends on neural networks for breast mass ultrasound, including and beyond diagnosis. We discussed original research recently conducted to analyze which modes of ultrasound and which models have been used for which purposes, and where they show the best performance. Our analysis reveals that lesion classification showed the highest performance compared to those used for other purposes. We also found that fewer studies were performed for prognosis than diagnosis. We also discussed the limitations and future directions of ongoing research on neural networks for breast ultrasound." @default.
- W4380358694 created "2023-06-13" @default.
- W4380358694 creator A5006476798 @default.
- W4380358694 creator A5058971804 @default.
- W4380358694 creator A5089497809 @default.
- W4380358694 creator A5092146428 @default.
- W4380358694 date "2023-06-10" @default.
- W4380358694 modified "2023-09-30" @default.
- W4380358694 title "Deep Learning in Different Ultrasound Methods for Breast Cancer, from Diagnosis to Prognosis: Current Trends, Challenges, and an Analysis" @default.
- W4380358694 cites W1966723894 @default.
- W4380358694 cites W1967040655 @default.
- W4380358694 cites W1971755838 @default.
- W4380358694 cites W1973464644 @default.
- W4380358694 cites W1988091515 @default.
- W4380358694 cites W1990393351 @default.
- W4380358694 cites W1996247404 @default.
- W4380358694 cites W1999379528 @default.
- W4380358694 cites W2002891887 @default.
- W4380358694 cites W2013172515 @default.
- W4380358694 cites W2015273266 @default.
- W4380358694 cites W2034905316 @default.
- W4380358694 cites W2047929368 @default.
- W4380358694 cites W2048766144 @default.
- W4380358694 cites W2080977036 @default.
- W4380358694 cites W2103274319 @default.
- W4380358694 cites W2128458647 @default.
- W4380358694 cites W2137040237 @default.
- W4380358694 cites W2139330962 @default.
- W4380358694 cites W2165556764 @default.
- W4380358694 cites W2290687990 @default.
- W4380358694 cites W2334960085 @default.
- W4380358694 cites W2336769953 @default.
- W4380358694 cites W2400728031 @default.
- W4380358694 cites W2413329697 @default.
- W4380358694 cites W2512827249 @default.
- W4380358694 cites W2552931286 @default.
- W4380358694 cites W2558727861 @default.
- W4380358694 cites W2566352549 @default.
- W4380358694 cites W2725008604 @default.
- W4380358694 cites W2739737978 @default.
- W4380358694 cites W2740028789 @default.
- W4380358694 cites W2744692634 @default.
- W4380358694 cites W2767236661 @default.
- W4380358694 cites W2772603135 @default.
- W4380358694 cites W2773642388 @default.
- W4380358694 cites W2789895747 @default.
- W4380358694 cites W2789956930 @default.
- W4380358694 cites W2792152774 @default.
- W4380358694 cites W2802787564 @default.
- W4380358694 cites W2804525729 @default.
- W4380358694 cites W2805105654 @default.
- W4380358694 cites W2809348156 @default.
- W4380358694 cites W2892942467 @default.
- W4380358694 cites W2893919471 @default.
- W4380358694 cites W2906658447 @default.
- W4380358694 cites W2906785117 @default.
- W4380358694 cites W2910702843 @default.
- W4380358694 cites W2922358453 @default.
- W4380358694 cites W2924306747 @default.
- W4380358694 cites W2929215516 @default.
- W4380358694 cites W2933200074 @default.
- W4380358694 cites W2939142770 @default.
- W4380358694 cites W2946074429 @default.
- W4380358694 cites W2955429674 @default.
- W4380358694 cites W2964671814 @default.
- W4380358694 cites W2969756602 @default.
- W4380358694 cites W2971002574 @default.
- W4380358694 cites W2973330744 @default.
- W4380358694 cites W2973515967 @default.
- W4380358694 cites W2976398475 @default.
- W4380358694 cites W2979291688 @default.
- W4380358694 cites W2982092517 @default.
- W4380358694 cites W2982938515 @default.
- W4380358694 cites W2989693433 @default.
- W4380358694 cites W2990272570 @default.
- W4380358694 cites W2996431286 @default.
- W4380358694 cites W2997709384 @default.
- W4380358694 cites W2999573949 @default.
- W4380358694 cites W3000617624 @default.
- W4380358694 cites W3003903700 @default.
- W4380358694 cites W3010519118 @default.
- W4380358694 cites W3025156977 @default.
- W4380358694 cites W3031941587 @default.
- W4380358694 cites W3082944873 @default.
- W4380358694 cites W3088669171 @default.
- W4380358694 cites W3098234188 @default.
- W4380358694 cites W3103947479 @default.
- W4380358694 cites W3110722024 @default.
- W4380358694 cites W3116042400 @default.
- W4380358694 cites W3118127787 @default.
- W4380358694 cites W3119485989 @default.
- W4380358694 cites W3128528820 @default.
- W4380358694 cites W3135379929 @default.
- W4380358694 cites W3154685621 @default.
- W4380358694 cites W3159047973 @default.
- W4380358694 cites W3172317317 @default.
- W4380358694 cites W3176744136 @default.
- W4380358694 cites W3179205703 @default.