Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380366526> ?p ?o ?g. }
- W4380366526 endingPage "140" @default.
- W4380366526 startingPage "126" @default.
- W4380366526 abstract "Portable near infrared (NIR) spectrometers are now readily available on the market and with their smaller size, weight and cost have provided the opportunity to analyze forages both on farms and directly in the field. As new technologies and new portable NIR instruments become available on the market, calibrations for these instruments become a major constraint due to the costs and time necessary to collect reference data. This study evaluated techniques to transfer calibrations for alfalfa and grass forage samples that were developed for a scanning benchtop monochromator (FOSS 6500, 400–2498 nm, LAB) to a diode array instrument (AuroraNir, 950–1650 nm, DA), a digital light processing instrument (NIR-S-G1, 950–1650 nm, DLP) and a short wavelength instrument (SCiO, 740–1070 nm, SCIO). Alfalfa (N = 612) and grass (N = 516) samples from eight agronomic studies were analyzed by wet chemistry for crude protein, neutral detergent fiber (NDF), acid detergent fiber (ADF), in-vitro digestibility (IVTD) and NDF digestibility (NDFD) and divided into calibration, test-set, standardization and inoculation/prediction datasets. Different calibration transfer strategies were evaluated: Spectral Bias Correction (SBC), Shenk and Westerhaus algorithm (SW), Piecewise Direct Standardization (PDS), Dynamic Orthogonal Projection (DOP) or creating a new calibration using LAB predictions of the inoculation/prediction dataset as reference values. All computations for trimming, calibration, validation and standardization were developed using R. SBC with inoculation was an effective method to transfer calibrations for DA. Validation errors for DA transferred calibrations were about 15% lower than LAB for alfalfa data but 6% greater for grass data. For SCIO after DOP spectral adjustment, predicting errors were slightly greater than LAB for both data sets, while prediction errors with DLP were two to three times greater than LAB even after inoculation. PDS created spectral artifacts in the spectra of all three portables, which then resulted in large validation errors. Using LAB predictions as reference values was suitable only for DA, while DLP and DA had large prediction errors. This study showed that calibration sharing between a benchtop and portable instruments is challenging, but possible depending on the portable technologies and the transfer method. Spectral bias correction plus inoculation was the best method to transfer multivariate models for the forage components’ prediction from LAB to handhelds, particularly for DA. Application of DOP was beneficial for SCIO to successfully maintain performance of the original calibration, while for DLP the prediction models were not accurate. Additional studies are necessary to verify these transferring techniques can also be applied to fresh forages, allowing an easier and extended implementation of NIR analysis directly in fields." @default.
- W4380366526 created "2023-06-13" @default.
- W4380366526 creator A5012308867 @default.
- W4380366526 creator A5014037617 @default.
- W4380366526 creator A5069678987 @default.
- W4380366526 creator A5071189635 @default.
- W4380366526 date "2023-06-01" @default.
- W4380366526 modified "2023-09-25" @default.
- W4380366526 title "Forage calibration transfer from laboratory to portable near infrared spectrometers" @default.
- W4380366526 cites W1976361619 @default.
- W4380366526 cites W1984816250 @default.
- W4380366526 cites W1986160853 @default.
- W4380366526 cites W2008600585 @default.
- W4380366526 cites W2012865653 @default.
- W4380366526 cites W2014731200 @default.
- W4380366526 cites W2016090370 @default.
- W4380366526 cites W2025544395 @default.
- W4380366526 cites W2026469743 @default.
- W4380366526 cites W2044526559 @default.
- W4380366526 cites W2052916447 @default.
- W4380366526 cites W2064032245 @default.
- W4380366526 cites W2066770881 @default.
- W4380366526 cites W2072777587 @default.
- W4380366526 cites W2090522662 @default.
- W4380366526 cites W2091971038 @default.
- W4380366526 cites W2094298149 @default.
- W4380366526 cites W2117922337 @default.
- W4380366526 cites W2280856774 @default.
- W4380366526 cites W2560432362 @default.
- W4380366526 cites W2754254239 @default.
- W4380366526 cites W2888421455 @default.
- W4380366526 cites W2958951166 @default.
- W4380366526 cites W3049284336 @default.
- W4380366526 cites W3084504821 @default.
- W4380366526 cites W3106290562 @default.
- W4380366526 cites W3126790882 @default.
- W4380366526 cites W3129470767 @default.
- W4380366526 cites W3130578312 @default.
- W4380366526 cites W3131793100 @default.
- W4380366526 cites W38117118 @default.
- W4380366526 cites W4206784685 @default.
- W4380366526 doi "https://doi.org/10.1177/09670335231173136" @default.
- W4380366526 hasPublicationYear "2023" @default.
- W4380366526 type Work @default.
- W4380366526 citedByCount "0" @default.
- W4380366526 crossrefType "journal-article" @default.
- W4380366526 hasAuthorship W4380366526A5012308867 @default.
- W4380366526 hasAuthorship W4380366526A5014037617 @default.
- W4380366526 hasAuthorship W4380366526A5069678987 @default.
- W4380366526 hasAuthorship W4380366526A5071189635 @default.
- W4380366526 hasConcept C105795698 @default.
- W4380366526 hasConcept C111919701 @default.
- W4380366526 hasConcept C118530786 @default.
- W4380366526 hasConcept C120665830 @default.
- W4380366526 hasConcept C121332964 @default.
- W4380366526 hasConcept C165838908 @default.
- W4380366526 hasConcept C188087704 @default.
- W4380366526 hasConcept C192562407 @default.
- W4380366526 hasConcept C205649164 @default.
- W4380366526 hasConcept C2779039770 @default.
- W4380366526 hasConcept C2779370140 @default.
- W4380366526 hasConcept C33390570 @default.
- W4380366526 hasConcept C33923547 @default.
- W4380366526 hasConcept C39432304 @default.
- W4380366526 hasConcept C41008148 @default.
- W4380366526 hasConcept C43571822 @default.
- W4380366526 hasConcept C62649853 @default.
- W4380366526 hasConcept C6557445 @default.
- W4380366526 hasConcept C86803240 @default.
- W4380366526 hasConceptScore W4380366526C105795698 @default.
- W4380366526 hasConceptScore W4380366526C111919701 @default.
- W4380366526 hasConceptScore W4380366526C118530786 @default.
- W4380366526 hasConceptScore W4380366526C120665830 @default.
- W4380366526 hasConceptScore W4380366526C121332964 @default.
- W4380366526 hasConceptScore W4380366526C165838908 @default.
- W4380366526 hasConceptScore W4380366526C188087704 @default.
- W4380366526 hasConceptScore W4380366526C192562407 @default.
- W4380366526 hasConceptScore W4380366526C205649164 @default.
- W4380366526 hasConceptScore W4380366526C2779039770 @default.
- W4380366526 hasConceptScore W4380366526C2779370140 @default.
- W4380366526 hasConceptScore W4380366526C33390570 @default.
- W4380366526 hasConceptScore W4380366526C33923547 @default.
- W4380366526 hasConceptScore W4380366526C39432304 @default.
- W4380366526 hasConceptScore W4380366526C41008148 @default.
- W4380366526 hasConceptScore W4380366526C43571822 @default.
- W4380366526 hasConceptScore W4380366526C62649853 @default.
- W4380366526 hasConceptScore W4380366526C6557445 @default.
- W4380366526 hasConceptScore W4380366526C86803240 @default.
- W4380366526 hasFunder F4320322725 @default.
- W4380366526 hasIssue "3" @default.
- W4380366526 hasLocation W43803665261 @default.
- W4380366526 hasOpenAccess W4380366526 @default.
- W4380366526 hasPrimaryLocation W43803665261 @default.
- W4380366526 hasRelatedWork W2003238946 @default.
- W4380366526 hasRelatedWork W2007960961 @default.
- W4380366526 hasRelatedWork W2057123266 @default.
- W4380366526 hasRelatedWork W2072793564 @default.
- W4380366526 hasRelatedWork W2122994832 @default.