Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380367086> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4380367086 abstract "Purpose This study aims at proposing a hybrid model for early cost prediction of a construction project. Early cost prediction for a construction project is the basic approach to procure a project within a predefined budget. However, most of the projects routinely face the impact of cost overruns. Furthermore, conventional and manual cost computing techniques are hectic, time-consuming and error-prone. To deal with such challenges, soft computing techniques such as artificial neural networks (ANNs), fuzzy logic and genetic algorithms are applied in construction management. Each technique has its own constraints not only in terms of efficiency but also in terms of feasibility, practicability, reliability and environmental impacts. However, appropriate combination of the techniques improves the model owing to their inherent nature. Design/methodology/approach This paper proposes a hybrid model by combining machine learning (ML) techniques with ANN to accurately predict the cost of pile foundations. The parameters contributing toward the cost of pile foundations were collected from five different projects in India. Out of 180 collected data entries, 176 entries were finally used after data cleaning. About 70% of the final data were used for building the model and the remaining 30% were used for validation. Findings The proposed model is capable of predicting the pile foundation costs with an accuracy of 97.42%. Originality/value Although various cost estimation techniques are available, appropriate use and combination of various ML techniques aid in improving the prediction accuracy. The proposed model will be a value addition to cost estimation of pile foundations." @default.
- W4380367086 created "2023-06-13" @default.
- W4380367086 creator A5020556950 @default.
- W4380367086 creator A5036133166 @default.
- W4380367086 creator A5077493963 @default.
- W4380367086 date "2023-06-13" @default.
- W4380367086 modified "2023-09-26" @default.
- W4380367086 title "A hybrid machine learning approach for early cost estimation of pile foundations" @default.
- W4380367086 cites W1975633953 @default.
- W4380367086 cites W2004638424 @default.
- W4380367086 cites W2005037121 @default.
- W4380367086 cites W2012395052 @default.
- W4380367086 cites W2023864852 @default.
- W4380367086 cites W2032374432 @default.
- W4380367086 cites W2064278072 @default.
- W4380367086 cites W2072327983 @default.
- W4380367086 cites W2075357005 @default.
- W4380367086 cites W2094276670 @default.
- W4380367086 cites W2110812170 @default.
- W4380367086 cites W2122523153 @default.
- W4380367086 cites W2143111989 @default.
- W4380367086 cites W2990406296 @default.
- W4380367086 cites W2991439194 @default.
- W4380367086 cites W3035251932 @default.
- W4380367086 cites W3045705369 @default.
- W4380367086 cites W3087508233 @default.
- W4380367086 cites W3106876954 @default.
- W4380367086 cites W3112134853 @default.
- W4380367086 cites W3187146186 @default.
- W4380367086 cites W3189245549 @default.
- W4380367086 cites W4200227359 @default.
- W4380367086 cites W4312082000 @default.
- W4380367086 cites W4318475858 @default.
- W4380367086 cites W4366505467 @default.
- W4380367086 doi "https://doi.org/10.1108/jedt-03-2023-0097" @default.
- W4380367086 hasPublicationYear "2023" @default.
- W4380367086 type Work @default.
- W4380367086 citedByCount "1" @default.
- W4380367086 countsByYear W43803670862023 @default.
- W4380367086 crossrefType "journal-article" @default.
- W4380367086 hasAuthorship W4380367086A5020556950 @default.
- W4380367086 hasAuthorship W4380367086A5036133166 @default.
- W4380367086 hasAuthorship W4380367086A5077493963 @default.
- W4380367086 hasConcept C11413529 @default.
- W4380367086 hasConcept C119560385 @default.
- W4380367086 hasConcept C119857082 @default.
- W4380367086 hasConcept C121332964 @default.
- W4380367086 hasConcept C124101348 @default.
- W4380367086 hasConcept C127413603 @default.
- W4380367086 hasConcept C140073362 @default.
- W4380367086 hasConcept C154945302 @default.
- W4380367086 hasConcept C163258240 @default.
- W4380367086 hasConcept C200601418 @default.
- W4380367086 hasConcept C201995342 @default.
- W4380367086 hasConcept C41008148 @default.
- W4380367086 hasConcept C43214815 @default.
- W4380367086 hasConcept C45804977 @default.
- W4380367086 hasConcept C50644808 @default.
- W4380367086 hasConcept C58166 @default.
- W4380367086 hasConcept C62520636 @default.
- W4380367086 hasConcept C8880873 @default.
- W4380367086 hasConcept C93983250 @default.
- W4380367086 hasConcept C96250715 @default.
- W4380367086 hasConceptScore W4380367086C11413529 @default.
- W4380367086 hasConceptScore W4380367086C119560385 @default.
- W4380367086 hasConceptScore W4380367086C119857082 @default.
- W4380367086 hasConceptScore W4380367086C121332964 @default.
- W4380367086 hasConceptScore W4380367086C124101348 @default.
- W4380367086 hasConceptScore W4380367086C127413603 @default.
- W4380367086 hasConceptScore W4380367086C140073362 @default.
- W4380367086 hasConceptScore W4380367086C154945302 @default.
- W4380367086 hasConceptScore W4380367086C163258240 @default.
- W4380367086 hasConceptScore W4380367086C200601418 @default.
- W4380367086 hasConceptScore W4380367086C201995342 @default.
- W4380367086 hasConceptScore W4380367086C41008148 @default.
- W4380367086 hasConceptScore W4380367086C43214815 @default.
- W4380367086 hasConceptScore W4380367086C45804977 @default.
- W4380367086 hasConceptScore W4380367086C50644808 @default.
- W4380367086 hasConceptScore W4380367086C58166 @default.
- W4380367086 hasConceptScore W4380367086C62520636 @default.
- W4380367086 hasConceptScore W4380367086C8880873 @default.
- W4380367086 hasConceptScore W4380367086C93983250 @default.
- W4380367086 hasConceptScore W4380367086C96250715 @default.
- W4380367086 hasLocation W43803670861 @default.
- W4380367086 hasOpenAccess W4380367086 @default.
- W4380367086 hasPrimaryLocation W43803670861 @default.
- W4380367086 hasRelatedWork W2002593334 @default.
- W4380367086 hasRelatedWork W2009796808 @default.
- W4380367086 hasRelatedWork W2013081562 @default.
- W4380367086 hasRelatedWork W2373081051 @default.
- W4380367086 hasRelatedWork W2375951064 @default.
- W4380367086 hasRelatedWork W2381766420 @default.
- W4380367086 hasRelatedWork W2979414744 @default.
- W4380367086 hasRelatedWork W4310605270 @default.
- W4380367086 hasRelatedWork W4377992896 @default.
- W4380367086 hasRelatedWork W1629725936 @default.
- W4380367086 isParatext "false" @default.
- W4380367086 isRetracted "false" @default.
- W4380367086 workType "article" @default.