Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380367794> ?p ?o ?g. }
- W4380367794 endingPage "5513" @default.
- W4380367794 startingPage "5502" @default.
- W4380367794 abstract "Fractional vegetation cover (FVC) is a vital indicator for monitoring regional vegetation and ecology. Although satellite remote sensing is used to monitor long-term changes in regional FVC, its applications are limited by the spatial resolution. Moreover, for unmanned aerial systems (UASs), obtaining long-term and large-scale images is difficult, and the efficiency of the synergy between UAS and satellite data for long-term FVC monitoring is limited. This article considered a mining area with extreme changes in vegetation as an example and proposed an efficient approach called multiple spatiotemporal-scale FVC prediction (MSFP) for long-term FVC monitoring in the region, which is based on the synergy of high spatial-resolution UAS data with high temporal-resolution Landsat data. First, we used the UAS imagery of several typical mining areas in Qianxi County of China collected in 2021, from which the vegetation information was extracted. Second, the 2-D Gaussian sampling was applied to aggregate, that is, to join/connect them into Landsat pixels. The vegetation index (VI) calculated from contemporary Landsat imagery was further used with the aggregated FVC of each satellite pixel. Finally, the VIs from the satellite imagery for different years were calibrated. The analysis demonstrated that: first, the proposed MSFP yielded improved the coefficient of determination (by 0.437) and decreased root-mean-square error (by 0.200) than the traditional dimidiate pixel method based on satellite imagery; second, the UAS imagery for few typical areas was used to predict the FVC of the large-scale area, thereby providing fine-scale vegetation information; third, the MSFP achieved high accuracy and long-term FVC monitoring by interyear calibration of VI calculated from Landsat data. This article paves the way toward accurate long-term monitoring of regional FVC. The demonstrated methodological framework is simple and operable, thereby opening the prospects for its applications in other environments." @default.
- W4380367794 created "2023-06-13" @default.
- W4380367794 creator A5003009126 @default.
- W4380367794 creator A5030380357 @default.
- W4380367794 creator A5037042702 @default.
- W4380367794 creator A5037458498 @default.
- W4380367794 creator A5071537289 @default.
- W4380367794 creator A5071575216 @default.
- W4380367794 creator A5088762559 @default.
- W4380367794 creator A5089902368 @default.
- W4380367794 date "2023-01-01" @default.
- W4380367794 modified "2023-09-23" @default.
- W4380367794 title "Approach for Monitoring Spatiotemporal Changes in Fractional Vegetation Cover Through Unmanned Aerial System-Guided-Satellite Survey: A Case Study in Mining Area" @default.
- W4380367794 cites W1970998763 @default.
- W4380367794 cites W1996351965 @default.
- W4380367794 cites W2014166031 @default.
- W4380367794 cites W2027373634 @default.
- W4380367794 cites W2029332336 @default.
- W4380367794 cites W2031769664 @default.
- W4380367794 cites W2035586922 @default.
- W4380367794 cites W2036665041 @default.
- W4380367794 cites W2061646766 @default.
- W4380367794 cites W2062791732 @default.
- W4380367794 cites W2063623478 @default.
- W4380367794 cites W2073781305 @default.
- W4380367794 cites W2077707413 @default.
- W4380367794 cites W2081824344 @default.
- W4380367794 cites W2097018019 @default.
- W4380367794 cites W2113410727 @default.
- W4380367794 cites W2132545125 @default.
- W4380367794 cites W2145243492 @default.
- W4380367794 cites W2149424384 @default.
- W4380367794 cites W2155151171 @default.
- W4380367794 cites W2167968759 @default.
- W4380367794 cites W2170097984 @default.
- W4380367794 cites W2337542812 @default.
- W4380367794 cites W2352966564 @default.
- W4380367794 cites W2526748414 @default.
- W4380367794 cites W2591549884 @default.
- W4380367794 cites W2796352871 @default.
- W4380367794 cites W2801514443 @default.
- W4380367794 cites W2809225792 @default.
- W4380367794 cites W2898235919 @default.
- W4380367794 cites W2911840655 @default.
- W4380367794 cites W2913229076 @default.
- W4380367794 cites W2923833971 @default.
- W4380367794 cites W2967257500 @default.
- W4380367794 cites W3003827559 @default.
- W4380367794 cites W3020212216 @default.
- W4380367794 cites W3094787782 @default.
- W4380367794 cites W3114905982 @default.
- W4380367794 cites W3116389085 @default.
- W4380367794 cites W3125880037 @default.
- W4380367794 cites W3133321747 @default.
- W4380367794 cites W3151858818 @default.
- W4380367794 cites W3173491629 @default.
- W4380367794 cites W3195669480 @default.
- W4380367794 cites W3198108106 @default.
- W4380367794 cites W4205595987 @default.
- W4380367794 cites W4210269592 @default.
- W4380367794 cites W4246787745 @default.
- W4380367794 cites W4280578135 @default.
- W4380367794 cites W4285082704 @default.
- W4380367794 cites W4292829977 @default.
- W4380367794 cites W4309604983 @default.
- W4380367794 cites W4311367148 @default.
- W4380367794 cites W4313191206 @default.
- W4380367794 doi "https://doi.org/10.1109/jstars.2023.3284913" @default.
- W4380367794 hasPublicationYear "2023" @default.
- W4380367794 type Work @default.
- W4380367794 citedByCount "0" @default.
- W4380367794 crossrefType "journal-article" @default.
- W4380367794 hasAuthorship W4380367794A5003009126 @default.
- W4380367794 hasAuthorship W4380367794A5030380357 @default.
- W4380367794 hasAuthorship W4380367794A5037042702 @default.
- W4380367794 hasAuthorship W4380367794A5037458498 @default.
- W4380367794 hasAuthorship W4380367794A5071537289 @default.
- W4380367794 hasAuthorship W4380367794A5071575216 @default.
- W4380367794 hasAuthorship W4380367794A5088762559 @default.
- W4380367794 hasAuthorship W4380367794A5089902368 @default.
- W4380367794 hasBestOaLocation W43803677941 @default.
- W4380367794 hasConcept C127413603 @default.
- W4380367794 hasConcept C140779682 @default.
- W4380367794 hasConcept C142724271 @default.
- W4380367794 hasConcept C146978453 @default.
- W4380367794 hasConcept C154945302 @default.
- W4380367794 hasConcept C160633673 @default.
- W4380367794 hasConcept C18903297 @default.
- W4380367794 hasConcept C19269812 @default.
- W4380367794 hasConcept C205372480 @default.
- W4380367794 hasConcept C205649164 @default.
- W4380367794 hasConcept C2776133958 @default.
- W4380367794 hasConcept C2778102629 @default.
- W4380367794 hasConcept C2778755073 @default.
- W4380367794 hasConcept C2780648208 @default.
- W4380367794 hasConcept C39432304 @default.
- W4380367794 hasConcept C41008148 @default.
- W4380367794 hasConcept C4792198 @default.