Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380433107> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4380433107 abstract "Abstract Background and Objectives: COVID-19 has adversely affected humans and societies in different aspects. Numerous people have perished due to inaccurate COVID-19 identification and, consequently, a lack of appropriate medical treatment. Numerous solutions based on manual and automatic feature extraction techniques have been investigated to address this issue by researchers worldwide. Typically, automatic feature extraction methods, particularly deep learning models, necessitate a powerful hardware system to perform the necessary computations. Unfortunately, many institutions and societies cannot benefit from these advancements due to the prohibitively high cost of high-quality hardware equipment. As a result, this study focused on two primary goals: first, lowering the computational costs associated with running the proposed model on embedded devices, mobile devices, and conventional computers; and second, improving the model's performance in comparison to previously published methods (at least performs on par with state of the art models) in order to ensure its performance and accuracy for the medical recognition task. Methods This study used two neural networks to improve feature extraction from our dataset: VGG19 and ResNet50V2. Both of these networks are capable of providing semantic features from the nominated dataset. Streaming is a fully connected classifier layer that feeds richer features, therefore feature vectors of these networks have been merged, and this action resulted in satisfactory classification results for normal and COVID-19 cases. On the other hand, these two networks have many layers and require a significant amount of computation. To this end, An alternative network was considered, namely MobileNetV2, which excels at extracting semantic features while requiring minimal computation on mobile and embedded devices. Knowledge distillation (KD) was used to transfer knowledge from the teacher network (concatenated ResNet50V2 and VGG19) to the student network (MobileNetV2) to improve MobileNetV2 performance and to achieve a robust and accurate model for the COVID-19 identification task from chest X-ray images. Results Pre-trained networks were used to provide a more useful starting point for the COVID-19 detection task. Additionally, a 5-fold cross-validation technique was used on both the teacher and student networks to evaluate the proposed method's performance. Finally, the proposed model achieved 98.8% accuracy in detecting infectious and normal cases. Conclusion The study results demonstrate the proposed method's superior performance. With the student model achieving acceptable accuracy and F1-score using cross-validation technique, it can be concluded that this network is well-suited for conventional computers, embedded systems, and clinical experts' cell phones." @default.
- W4380433107 created "2023-06-14" @default.
- W4380433107 creator A5021745367 @default.
- W4380433107 creator A5050612698 @default.
- W4380433107 creator A5061100378 @default.
- W4380433107 creator A5081690303 @default.
- W4380433107 date "2023-05-30" @default.
- W4380433107 modified "2023-09-24" @default.
- W4380433107 title "Designing an Improved Deep Learning-based Model for COVID-19 Recognition in Chest X-ray Images: A Knowledge Distillation Approach" @default.
- W4380433107 cites W2563780449 @default.
- W4380433107 cites W2744749505 @default.
- W4380433107 cites W2778306876 @default.
- W4380433107 cites W3013601031 @default.
- W4380433107 cites W3016488464 @default.
- W4380433107 cites W3017855299 @default.
- W4380433107 cites W3025953162 @default.
- W4380433107 cites W3033616466 @default.
- W4380433107 cites W3034368386 @default.
- W4380433107 cites W3045460727 @default.
- W4380433107 cites W3048749423 @default.
- W4380433107 cites W3048886990 @default.
- W4380433107 cites W3049510520 @default.
- W4380433107 cites W3082801331 @default.
- W4380433107 cites W3087000505 @default.
- W4380433107 cites W3091978650 @default.
- W4380433107 cites W3097211536 @default.
- W4380433107 cites W3101606529 @default.
- W4380433107 cites W3105081694 @default.
- W4380433107 cites W3109289137 @default.
- W4380433107 cites W3110113487 @default.
- W4380433107 cites W3112390123 @default.
- W4380433107 cites W3113444169 @default.
- W4380433107 cites W3117282899 @default.
- W4380433107 cites W3119875393 @default.
- W4380433107 cites W3120186428 @default.
- W4380433107 cites W3121824128 @default.
- W4380433107 cites W3122727436 @default.
- W4380433107 cites W3124512534 @default.
- W4380433107 cites W3154884208 @default.
- W4380433107 cites W3165066669 @default.
- W4380433107 cites W3185948986 @default.
- W4380433107 cites W4205702875 @default.
- W4380433107 cites W4220685350 @default.
- W4380433107 doi "https://doi.org/10.21203/rs.3.rs-2970067/v1" @default.
- W4380433107 hasPublicationYear "2023" @default.
- W4380433107 type Work @default.
- W4380433107 citedByCount "1" @default.
- W4380433107 countsByYear W43804331072023 @default.
- W4380433107 crossrefType "posted-content" @default.
- W4380433107 hasAuthorship W4380433107A5021745367 @default.
- W4380433107 hasAuthorship W4380433107A5050612698 @default.
- W4380433107 hasAuthorship W4380433107A5061100378 @default.
- W4380433107 hasAuthorship W4380433107A5081690303 @default.
- W4380433107 hasBestOaLocation W43804331071 @default.
- W4380433107 hasConcept C108583219 @default.
- W4380433107 hasConcept C11413529 @default.
- W4380433107 hasConcept C119857082 @default.
- W4380433107 hasConcept C138885662 @default.
- W4380433107 hasConcept C153180895 @default.
- W4380433107 hasConcept C154945302 @default.
- W4380433107 hasConcept C2776401178 @default.
- W4380433107 hasConcept C41008148 @default.
- W4380433107 hasConcept C41895202 @default.
- W4380433107 hasConcept C45374587 @default.
- W4380433107 hasConcept C50644808 @default.
- W4380433107 hasConcept C52622490 @default.
- W4380433107 hasConcept C81363708 @default.
- W4380433107 hasConcept C95623464 @default.
- W4380433107 hasConceptScore W4380433107C108583219 @default.
- W4380433107 hasConceptScore W4380433107C11413529 @default.
- W4380433107 hasConceptScore W4380433107C119857082 @default.
- W4380433107 hasConceptScore W4380433107C138885662 @default.
- W4380433107 hasConceptScore W4380433107C153180895 @default.
- W4380433107 hasConceptScore W4380433107C154945302 @default.
- W4380433107 hasConceptScore W4380433107C2776401178 @default.
- W4380433107 hasConceptScore W4380433107C41008148 @default.
- W4380433107 hasConceptScore W4380433107C41895202 @default.
- W4380433107 hasConceptScore W4380433107C45374587 @default.
- W4380433107 hasConceptScore W4380433107C50644808 @default.
- W4380433107 hasConceptScore W4380433107C52622490 @default.
- W4380433107 hasConceptScore W4380433107C81363708 @default.
- W4380433107 hasConceptScore W4380433107C95623464 @default.
- W4380433107 hasLocation W43804331071 @default.
- W4380433107 hasLocation W43804331072 @default.
- W4380433107 hasOpenAccess W4380433107 @default.
- W4380433107 hasPrimaryLocation W43804331071 @default.
- W4380433107 hasRelatedWork W2279398222 @default.
- W4380433107 hasRelatedWork W2546942002 @default.
- W4380433107 hasRelatedWork W2731899572 @default.
- W4380433107 hasRelatedWork W3133861977 @default.
- W4380433107 hasRelatedWork W3156786002 @default.
- W4380433107 hasRelatedWork W4200173597 @default.
- W4380433107 hasRelatedWork W4299822940 @default.
- W4380433107 hasRelatedWork W4312417841 @default.
- W4380433107 hasRelatedWork W4321369474 @default.
- W4380433107 hasRelatedWork W4366492315 @default.
- W4380433107 isParatext "false" @default.
- W4380433107 isRetracted "false" @default.
- W4380433107 workType "article" @default.