Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380450082> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4380450082 abstract "The use of deep learning is particularly effective for biomedical applications involving semantic segmentation. In semantic segmentation, one of the most popular deep learning architectures is U-Net, which is specifically designed for feature cascading for pixel classification. There are several versions of U-Net, such as Residual U-Net (ResU-Net), Recurrent U-Net (RU-Net), and Recurrent Residual U-Net (R2U-Net), which have been proposed for improved performance. The recurrent connection in a layer of the neural network can create a cycle of transferring the output information of a layer back to itself as an input. Each layer's output responses can thus be thought of as additional input variables. The new model is based on Residues in Succession U-Net where the residues from successive layers extract reinforced information from the previous layers in addition to the recurrent feedback loop exhibiting several advantages. The improved learning and accumulation of the features in subsequent layers play a major part. The proposed model produces precise extraction and accumulation of features from each layer reinforcing the learning. The outputs of the combination of recurrent and residues in successive layers ensure better feature representation for segmentation tasks. We use a benchmark expert-annotated dataset viz. Structured Analysis of Retina (STARE) for measuring the abilities of the Residues in Succession Recurrent U-Net (RSR U-Net) to segment blood vessels in retinal images. The testing and evaluation results show that the new model provides improved performance when compared to U-Net, R2U-Net and Residues in Succession U-Net in the same experimentation setup." @default.
- W4380450082 created "2023-06-14" @default.
- W4380450082 creator A5018910735 @default.
- W4380450082 creator A5027050296 @default.
- W4380450082 creator A5061050831 @default.
- W4380450082 date "2023-06-13" @default.
- W4380450082 modified "2023-09-25" @default.
- W4380450082 title "Residues in succession recurrent U-Net for segmentation of retinal blood vessels" @default.
- W4380450082 doi "https://doi.org/10.1117/12.2664876" @default.
- W4380450082 hasPublicationYear "2023" @default.
- W4380450082 type Work @default.
- W4380450082 citedByCount "0" @default.
- W4380450082 crossrefType "proceedings-article" @default.
- W4380450082 hasAuthorship W4380450082A5018910735 @default.
- W4380450082 hasAuthorship W4380450082A5027050296 @default.
- W4380450082 hasAuthorship W4380450082A5061050831 @default.
- W4380450082 hasConcept C108583219 @default.
- W4380450082 hasConcept C11413529 @default.
- W4380450082 hasConcept C127313418 @default.
- W4380450082 hasConcept C13280743 @default.
- W4380450082 hasConcept C138885662 @default.
- W4380450082 hasConcept C14166107 @default.
- W4380450082 hasConcept C147168706 @default.
- W4380450082 hasConcept C153180895 @default.
- W4380450082 hasConcept C154945302 @default.
- W4380450082 hasConcept C155512373 @default.
- W4380450082 hasConcept C178790620 @default.
- W4380450082 hasConcept C185592680 @default.
- W4380450082 hasConcept C185798385 @default.
- W4380450082 hasConcept C2524010 @default.
- W4380450082 hasConcept C2776401178 @default.
- W4380450082 hasConcept C2779227376 @default.
- W4380450082 hasConcept C33923547 @default.
- W4380450082 hasConcept C41008148 @default.
- W4380450082 hasConcept C41895202 @default.
- W4380450082 hasConcept C50644808 @default.
- W4380450082 hasConcept C89600930 @default.
- W4380450082 hasConceptScore W4380450082C108583219 @default.
- W4380450082 hasConceptScore W4380450082C11413529 @default.
- W4380450082 hasConceptScore W4380450082C127313418 @default.
- W4380450082 hasConceptScore W4380450082C13280743 @default.
- W4380450082 hasConceptScore W4380450082C138885662 @default.
- W4380450082 hasConceptScore W4380450082C14166107 @default.
- W4380450082 hasConceptScore W4380450082C147168706 @default.
- W4380450082 hasConceptScore W4380450082C153180895 @default.
- W4380450082 hasConceptScore W4380450082C154945302 @default.
- W4380450082 hasConceptScore W4380450082C155512373 @default.
- W4380450082 hasConceptScore W4380450082C178790620 @default.
- W4380450082 hasConceptScore W4380450082C185592680 @default.
- W4380450082 hasConceptScore W4380450082C185798385 @default.
- W4380450082 hasConceptScore W4380450082C2524010 @default.
- W4380450082 hasConceptScore W4380450082C2776401178 @default.
- W4380450082 hasConceptScore W4380450082C2779227376 @default.
- W4380450082 hasConceptScore W4380450082C33923547 @default.
- W4380450082 hasConceptScore W4380450082C41008148 @default.
- W4380450082 hasConceptScore W4380450082C41895202 @default.
- W4380450082 hasConceptScore W4380450082C50644808 @default.
- W4380450082 hasConceptScore W4380450082C89600930 @default.
- W4380450082 hasLocation W43804500821 @default.
- W4380450082 hasOpenAccess W4380450082 @default.
- W4380450082 hasPrimaryLocation W43804500821 @default.
- W4380450082 hasRelatedWork W2790662084 @default.
- W4380450082 hasRelatedWork W2948658236 @default.
- W4380450082 hasRelatedWork W2972212393 @default.
- W4380450082 hasRelatedWork W3005641657 @default.
- W4380450082 hasRelatedWork W3126924529 @default.
- W4380450082 hasRelatedWork W4220708658 @default.
- W4380450082 hasRelatedWork W4243168368 @default.
- W4380450082 hasRelatedWork W4287343029 @default.
- W4380450082 hasRelatedWork W4293211451 @default.
- W4380450082 hasRelatedWork W4297779434 @default.
- W4380450082 isParatext "false" @default.
- W4380450082 isRetracted "false" @default.
- W4380450082 workType "article" @default.