Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380450152> ?p ?o ?g. }
- W4380450152 endingPage "e1011432" @default.
- W4380450152 startingPage "e1011432" @default.
- W4380450152 abstract "Background SARS-CoV-2 emerged as a new coronavirus causing COVID-19, and it has been responsible for more than 760 million cases and 6.8 million deaths worldwide until March 2023. Although infected individuals could be asymptomatic, other patients presented heterogeneity and a wide range of symptoms. Therefore, identifying those infected individuals and being able to classify them according to their expected severity could help target health efforts more effectively. Methodology/Principal findings Therefore, we wanted to develop a machine learning model to predict those who will develop severe disease at the moment of hospital admission. We recruited 75 individuals and analysed innate and adaptive immune system subsets by flow cytometry. Also, we collected clinical and biochemical information. The objective of the study was to leverage machine learning techniques to identify clinical features associated with disease severity progression. Additionally, the study sought to elucidate the specific cellular subsets involved in the disease following the onset of symptoms. Among the several machine learning models tested, we found that the Elastic Net model was the better to predict the severity score according to a modified WHO classification. This model was able to predict the severity score of 72 out of 75 individuals. Besides, all the machine learning models revealed that CD38+ Treg and CD16+ CD56neg HLA-DR+ NK cells were highly correlated with the severity. Conclusions/Significance The Elastic Net model could stratify the uninfected individuals and the COVID-19 patients from asymptomatic to severe COVID-19 patients. On the other hand, these cellular subsets presented here could help to understand better the induction and progression of the symptoms in COVID-19 individuals." @default.
- W4380450152 created "2023-06-14" @default.
- W4380450152 creator A5001081321 @default.
- W4380450152 creator A5003645460 @default.
- W4380450152 creator A5022498256 @default.
- W4380450152 creator A5034302474 @default.
- W4380450152 creator A5037322285 @default.
- W4380450152 creator A5043391533 @default.
- W4380450152 creator A5046596143 @default.
- W4380450152 creator A5058765052 @default.
- W4380450152 creator A5077138322 @default.
- W4380450152 creator A5082190406 @default.
- W4380450152 creator A5085854103 @default.
- W4380450152 creator A5091587868 @default.
- W4380450152 creator A5092152643 @default.
- W4380450152 date "2023-06-13" @default.
- W4380450152 modified "2023-09-26" @default.
- W4380450152 title "Multidimensional analysis of immune cells from COVID-19 patients identified cell subsets associated with the severity at hospital admission" @default.
- W4380450152 cites W2073300038 @default.
- W4380450152 cites W2093517111 @default.
- W4380450152 cites W2102243327 @default.
- W4380450152 cites W2146375469 @default.
- W4380450152 cites W2400276917 @default.
- W4380450152 cites W2783997313 @default.
- W4380450152 cites W2910571769 @default.
- W4380450152 cites W2999475127 @default.
- W4380450152 cites W3008028633 @default.
- W4380450152 cites W3010441732 @default.
- W4380450152 cites W3011508332 @default.
- W4380450152 cites W3011610993 @default.
- W4380450152 cites W3014524604 @default.
- W4380450152 cites W3024853795 @default.
- W4380450152 cites W3026730158 @default.
- W4380450152 cites W3029243274 @default.
- W4380450152 cites W3034312608 @default.
- W4380450152 cites W3034858522 @default.
- W4380450152 cites W3038309988 @default.
- W4380450152 cites W3044595037 @default.
- W4380450152 cites W3046066086 @default.
- W4380450152 cites W3098710536 @default.
- W4380450152 cites W3100945976 @default.
- W4380450152 cites W3106704421 @default.
- W4380450152 cites W3109609475 @default.
- W4380450152 cites W3114970284 @default.
- W4380450152 cites W3118545484 @default.
- W4380450152 cites W3120977789 @default.
- W4380450152 cites W3126238650 @default.
- W4380450152 cites W3130086192 @default.
- W4380450152 cites W3158484568 @default.
- W4380450152 cites W3161263649 @default.
- W4380450152 cites W3196097483 @default.
- W4380450152 cites W3198672363 @default.
- W4380450152 cites W3212922389 @default.
- W4380450152 cites W4205339258 @default.
- W4380450152 cites W4206105705 @default.
- W4380450152 cites W4206683529 @default.
- W4380450152 cites W4210585911 @default.
- W4380450152 cites W4213069125 @default.
- W4380450152 cites W4214661440 @default.
- W4380450152 cites W4214775733 @default.
- W4380450152 cites W4220705425 @default.
- W4380450152 cites W4223505801 @default.
- W4380450152 cites W4223557657 @default.
- W4380450152 cites W4224950216 @default.
- W4380450152 cites W4226342921 @default.
- W4380450152 cites W4229376384 @default.
- W4380450152 cites W4281551335 @default.
- W4380450152 cites W4282922789 @default.
- W4380450152 cites W4283315998 @default.
- W4380450152 doi "https://doi.org/10.1371/journal.ppat.1011432" @default.
- W4380450152 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37311004" @default.
- W4380450152 hasPublicationYear "2023" @default.
- W4380450152 type Work @default.
- W4380450152 citedByCount "0" @default.
- W4380450152 crossrefType "journal-article" @default.
- W4380450152 hasAuthorship W4380450152A5001081321 @default.
- W4380450152 hasAuthorship W4380450152A5003645460 @default.
- W4380450152 hasAuthorship W4380450152A5022498256 @default.
- W4380450152 hasAuthorship W4380450152A5034302474 @default.
- W4380450152 hasAuthorship W4380450152A5037322285 @default.
- W4380450152 hasAuthorship W4380450152A5043391533 @default.
- W4380450152 hasAuthorship W4380450152A5046596143 @default.
- W4380450152 hasAuthorship W4380450152A5058765052 @default.
- W4380450152 hasAuthorship W4380450152A5077138322 @default.
- W4380450152 hasAuthorship W4380450152A5082190406 @default.
- W4380450152 hasAuthorship W4380450152A5085854103 @default.
- W4380450152 hasAuthorship W4380450152A5091587868 @default.
- W4380450152 hasAuthorship W4380450152A5092152643 @default.
- W4380450152 hasBestOaLocation W43804501521 @default.
- W4380450152 hasConcept C10205521 @default.
- W4380450152 hasConcept C114684123 @default.
- W4380450152 hasConcept C126322002 @default.
- W4380450152 hasConcept C159912055 @default.
- W4380450152 hasConcept C167672396 @default.
- W4380450152 hasConcept C203014093 @default.
- W4380450152 hasConcept C2777910003 @default.
- W4380450152 hasConcept C2779134260 @default.
- W4380450152 hasConcept C2781462264 @default.