Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380450168> ?p ?o ?g. }
- W4380450168 abstract "Collaboration between epilepsy centers is essential to integrate multimodal data for epilepsy research. Scalable tools for rapid and reproducible data analysis facilitate multicenter data integration and harmonization. Clinicians use intracranial EEG (iEEG) in conjunction with non-invasive brain imaging to identify epileptic networks and target therapy for drug-resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of electrode reconstruction, which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. These tasks are still performed manually in many epilepsy centers. We developed a standalone, modular pipeline that performs electrode reconstruction. We demonstrate our tool's compatibility with clinical and research workflows and its scalability on cloud platforms.We created IEEG-recon , a scalable electrode reconstruction pipeline for semi-automatic iEEG annotation, rapid image registration, and electrode assignment on brain MRIs. Its modular architecture includes three modules: a clinical module for electrode labeling and localization, and a research module for automated data processing and electrode contact assignment. To ensure accessibility for users with limited programming and imaging expertise, we packaged iEEG-recon in a containerized format that allows integration into clinical workflows. We propose a cloud-based implementation of iEEG-recon, and test our pipeline on data from 132 patients at two epilepsy centers using retrospective and prospective cohorts.We used iEEG-recon to accurately reconstruct electrodes in both electrocorticography (ECoG) and stereoelectroencephalography (SEEG) cases with a 10 minute running time per case, and ∼20 min for semi-automatic electrode labeling. iEEG-recon generates quality assurance reports and visualizations to support epilepsy surgery discussions. Reconstruction outputs from the clinical module were radiologically validated through pre- and post-implant T1-MRI visual inspections. Our use of ANTsPyNet deep learning approach for brain segmentation and electrode classification was consistent with the widely used Freesurfer segmentation.iEEG-recon is a valuable tool for automating reconstruction of iEEG electrodes and implantable devices on brain MRI, promoting efficient data analysis, and integration into clinical workflows. The tool's accuracy, speed, and compatibility with cloud platforms make it a useful resource for epilepsy centers worldwide. Comprehensive documentation is available at https://ieeg-recon.readthedocs.io/en/latest/." @default.
- W4380450168 created "2023-06-14" @default.
- W4380450168 creator A5007603388 @default.
- W4380450168 creator A5010530470 @default.
- W4380450168 creator A5017821899 @default.
- W4380450168 creator A5025315368 @default.
- W4380450168 creator A5025795521 @default.
- W4380450168 creator A5029183930 @default.
- W4380450168 creator A5040928549 @default.
- W4380450168 creator A5047157013 @default.
- W4380450168 creator A5068966342 @default.
- W4380450168 creator A5074670812 @default.
- W4380450168 creator A5079120203 @default.
- W4380450168 creator A5090784767 @default.
- W4380450168 creator A5092152650 @default.
- W4380450168 creator A5092152651 @default.
- W4380450168 date "2023-06-13" @default.
- W4380450168 modified "2023-09-26" @default.
- W4380450168 title "iEEG-recon: A Fast and Scalable Pipeline for Accurate Reconstruction of Intracranial Electrodes and Implantable Devices" @default.
- W4380450168 cites W1739514309 @default.
- W4380450168 cites W2011278693 @default.
- W4380450168 cites W2019587683 @default.
- W4380450168 cites W2052644075 @default.
- W4380450168 cites W2101135654 @default.
- W4380450168 cites W2117082366 @default.
- W4380450168 cites W2127890285 @default.
- W4380450168 cites W2148726987 @default.
- W4380450168 cites W2169366712 @default.
- W4380450168 cites W2461769565 @default.
- W4380450168 cites W2517148812 @default.
- W4380450168 cites W2522034100 @default.
- W4380450168 cites W2538104690 @default.
- W4380450168 cites W2563406483 @default.
- W4380450168 cites W2593890214 @default.
- W4380450168 cites W2765117211 @default.
- W4380450168 cites W2781449637 @default.
- W4380450168 cites W2804300206 @default.
- W4380450168 cites W2924675021 @default.
- W4380450168 cites W2945987292 @default.
- W4380450168 cites W2951013745 @default.
- W4380450168 cites W2951617899 @default.
- W4380450168 cites W2959169826 @default.
- W4380450168 cites W2973007151 @default.
- W4380450168 cites W2982373922 @default.
- W4380450168 cites W3108561765 @default.
- W4380450168 cites W3158596096 @default.
- W4380450168 cites W4205461504 @default.
- W4380450168 cites W4206719969 @default.
- W4380450168 cites W4212793977 @default.
- W4380450168 cites W4220958791 @default.
- W4380450168 cites W4224234943 @default.
- W4380450168 cites W4280546425 @default.
- W4380450168 cites W4288723200 @default.
- W4380450168 cites W4309656802 @default.
- W4380450168 cites W4313892341 @default.
- W4380450168 cites W4322719962 @default.
- W4380450168 cites W4376641000 @default.
- W4380450168 doi "https://doi.org/10.1101/2023.06.12.23291286" @default.
- W4380450168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37398160" @default.
- W4380450168 hasPublicationYear "2023" @default.
- W4380450168 type Work @default.
- W4380450168 citedByCount "1" @default.
- W4380450168 countsByYear W43804501682023 @default.
- W4380450168 crossrefType "posted-content" @default.
- W4380450168 hasAuthorship W4380450168A5007603388 @default.
- W4380450168 hasAuthorship W4380450168A5010530470 @default.
- W4380450168 hasAuthorship W4380450168A5017821899 @default.
- W4380450168 hasAuthorship W4380450168A5025315368 @default.
- W4380450168 hasAuthorship W4380450168A5025795521 @default.
- W4380450168 hasAuthorship W4380450168A5029183930 @default.
- W4380450168 hasAuthorship W4380450168A5040928549 @default.
- W4380450168 hasAuthorship W4380450168A5047157013 @default.
- W4380450168 hasAuthorship W4380450168A5068966342 @default.
- W4380450168 hasAuthorship W4380450168A5074670812 @default.
- W4380450168 hasAuthorship W4380450168A5079120203 @default.
- W4380450168 hasAuthorship W4380450168A5090784767 @default.
- W4380450168 hasAuthorship W4380450168A5092152650 @default.
- W4380450168 hasAuthorship W4380450168A5092152651 @default.
- W4380450168 hasBestOaLocation W43804501681 @default.
- W4380450168 hasConcept C101468663 @default.
- W4380450168 hasConcept C111919701 @default.
- W4380450168 hasConcept C154945302 @default.
- W4380450168 hasConcept C169760540 @default.
- W4380450168 hasConcept C177212765 @default.
- W4380450168 hasConcept C199360897 @default.
- W4380450168 hasConcept C2778186239 @default.
- W4380450168 hasConcept C2780803581 @default.
- W4380450168 hasConcept C41008148 @default.
- W4380450168 hasConcept C43521106 @default.
- W4380450168 hasConcept C48044578 @default.
- W4380450168 hasConcept C58693492 @default.
- W4380450168 hasConcept C77088390 @default.
- W4380450168 hasConcept C79974875 @default.
- W4380450168 hasConcept C86803240 @default.
- W4380450168 hasConceptScore W4380450168C101468663 @default.
- W4380450168 hasConceptScore W4380450168C111919701 @default.
- W4380450168 hasConceptScore W4380450168C154945302 @default.
- W4380450168 hasConceptScore W4380450168C169760540 @default.
- W4380450168 hasConceptScore W4380450168C177212765 @default.
- W4380450168 hasConceptScore W4380450168C199360897 @default.