Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380451179> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4380451179 endingPage "416" @default.
- W4380451179 startingPage "407" @default.
- W4380451179 abstract "Spammers disseminating obscene content on Twitter have been studied and detected using various hybrid features and machine learning approaches in past. To have greater insight into data prevailing in form of text on platforms like Twitter, their correct vector representation is paramount. Our goal is to understand what encoding techniques are more suitable for representing long text documents. We proposed a novel deep learning model consisting of a Universal Sentence Encoder (USE) as a feature extractor and an artificial neural network (ANN) as a classifier. We transform all the sentence vectors representing the tweets of a user into a document vector. These vectors are used as high-quality features to be processed by the artificial neural network for classification. To check the effectiveness of our proposed model, different sentence embedding techniques such as Doc2Vec, Infersent, and Sentence-Bert have been used and compared with the proposed model. Experimental results show that the proposed model outperforms all of them in terms of recall, precision, f1-score, and AUROC. Our results show that a simple ANN combined with USE-based deep learning approach can be a robust solution for the detection of spammers on Twitter." @default.
- W4380451179 created "2023-06-14" @default.
- W4380451179 creator A5005695392 @default.
- W4380451179 creator A5011147749 @default.
- W4380451179 creator A5012627745 @default.
- W4380451179 date "2023-01-01" @default.
- W4380451179 modified "2023-09-27" @default.
- W4380451179 title "USE-Based Deep Learning Approach to Detect Spammers on Twitter" @default.
- W4380451179 cites W1996802155 @default.
- W4380451179 cites W2030978449 @default.
- W4380451179 cites W2250473257 @default.
- W4380451179 cites W2250539671 @default.
- W4380451179 cites W2251839694 @default.
- W4380451179 cites W2409697880 @default.
- W4380451179 cites W2471485739 @default.
- W4380451179 cites W2518245423 @default.
- W4380451179 cites W2560422406 @default.
- W4380451179 cites W2753540975 @default.
- W4380451179 cites W2789757566 @default.
- W4380451179 cites W2804092916 @default.
- W4380451179 cites W2891177506 @default.
- W4380451179 cites W2921343172 @default.
- W4380451179 cites W2944904554 @default.
- W4380451179 cites W2945795962 @default.
- W4380451179 cites W2963918774 @default.
- W4380451179 cites W2970641574 @default.
- W4380451179 cites W2984197274 @default.
- W4380451179 cites W3089239703 @default.
- W4380451179 cites W3190340589 @default.
- W4380451179 cites W3196217131 @default.
- W4380451179 cites W4238481634 @default.
- W4380451179 doi "https://doi.org/10.1007/978-981-99-0769-4_36" @default.
- W4380451179 hasPublicationYear "2023" @default.
- W4380451179 type Work @default.
- W4380451179 citedByCount "0" @default.
- W4380451179 crossrefType "book-chapter" @default.
- W4380451179 hasAuthorship W4380451179A5005695392 @default.
- W4380451179 hasAuthorship W4380451179A5011147749 @default.
- W4380451179 hasAuthorship W4380451179A5012627745 @default.
- W4380451179 hasConcept C111919701 @default.
- W4380451179 hasConcept C117978034 @default.
- W4380451179 hasConcept C118505674 @default.
- W4380451179 hasConcept C119857082 @default.
- W4380451179 hasConcept C127413603 @default.
- W4380451179 hasConcept C13672336 @default.
- W4380451179 hasConcept C136764020 @default.
- W4380451179 hasConcept C143275388 @default.
- W4380451179 hasConcept C154945302 @default.
- W4380451179 hasConcept C21880701 @default.
- W4380451179 hasConcept C2777530160 @default.
- W4380451179 hasConcept C41008148 @default.
- W4380451179 hasConcept C50644808 @default.
- W4380451179 hasConcept C518677369 @default.
- W4380451179 hasConcept C81669768 @default.
- W4380451179 hasConcept C83665646 @default.
- W4380451179 hasConcept C95623464 @default.
- W4380451179 hasConceptScore W4380451179C111919701 @default.
- W4380451179 hasConceptScore W4380451179C117978034 @default.
- W4380451179 hasConceptScore W4380451179C118505674 @default.
- W4380451179 hasConceptScore W4380451179C119857082 @default.
- W4380451179 hasConceptScore W4380451179C127413603 @default.
- W4380451179 hasConceptScore W4380451179C13672336 @default.
- W4380451179 hasConceptScore W4380451179C136764020 @default.
- W4380451179 hasConceptScore W4380451179C143275388 @default.
- W4380451179 hasConceptScore W4380451179C154945302 @default.
- W4380451179 hasConceptScore W4380451179C21880701 @default.
- W4380451179 hasConceptScore W4380451179C2777530160 @default.
- W4380451179 hasConceptScore W4380451179C41008148 @default.
- W4380451179 hasConceptScore W4380451179C50644808 @default.
- W4380451179 hasConceptScore W4380451179C518677369 @default.
- W4380451179 hasConceptScore W4380451179C81669768 @default.
- W4380451179 hasConceptScore W4380451179C83665646 @default.
- W4380451179 hasConceptScore W4380451179C95623464 @default.
- W4380451179 hasLocation W43804511791 @default.
- W4380451179 hasOpenAccess W4380451179 @default.
- W4380451179 hasPrimaryLocation W43804511791 @default.
- W4380451179 hasRelatedWork W129986042 @default.
- W4380451179 hasRelatedWork W2512018286 @default.
- W4380451179 hasRelatedWork W2556319748 @default.
- W4380451179 hasRelatedWork W2623427976 @default.
- W4380451179 hasRelatedWork W2961085424 @default.
- W4380451179 hasRelatedWork W3200179079 @default.
- W4380451179 hasRelatedWork W3206224646 @default.
- W4380451179 hasRelatedWork W4249229055 @default.
- W4380451179 hasRelatedWork W4380451179 @default.
- W4380451179 hasRelatedWork W1629725936 @default.
- W4380451179 isParatext "false" @default.
- W4380451179 isRetracted "false" @default.
- W4380451179 workType "book-chapter" @default.