Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380478936> ?p ?o ?g. }
- W4380478936 endingPage "113" @default.
- W4380478936 startingPage "87" @default.
- W4380478936 abstract "Due to limited resources and environmental pollution, monitoring the geological environment has become essential for many countries’ sustainable development. As various high-resolution remote-sensing (RS) imaging platforms are continuously available, the remote sensing of the geological environment (GERS) provides a fine-grain, all-weather, and low-cost method for identifying geological elements. Mainstream machine learning (ML) and deep learning (DL) methods can extract high-level high-dimensional semantic information and thus supply an efficient tool for high-precision classification and recognition in many fields. Therefore, the integration of advanced methods and multi-source RS images for GERS interpretation has achieved remarkable breakthroughs during the past decades. However, to the best of our knowledge, a systematic survey of the advances of GERS interpretation regarding ML and DL methods is still lacking. Through the collection of extensive published research in this area, this survey outlines and analyzes the challenges, progress, and promising directions of GERS interpretation. Specifically, the main challenges and difficulties in identifying GERS elements are first summarized in four aspects: sufficient element characteristics and variations, complex context disturbance, RS image quality and types, and other limitations in GERS interpretation. Second, we systematically introduce various RS imaging platforms and advanced ML and DL methods for GERS interpretation. Third, the research status and trends of several GERS applications, including their use for lithology, soil, water, rock glacier, and geological disaster, are ultimately collected and compared. Finally, potential opportunities for future research are discussed. After the systematic and comprehensive review, the conclusive findings suggest that longtime large-scale GERS interpretation and corresponding change pattern analysis will be a significant future direction to meet the needs of environment improvement and sustainable development. To complete the above goals, a fusion of satellite, airplane, environmental monitoring, geological survey, and other types of data will provide enough discriminative information, and expert knowledge, GIS, and high-performance computing techniques will be helpful to improve the efficiency and generalizability of ML and DL methods for processing the multi-platform RS data." @default.
- W4380478936 created "2023-06-14" @default.
- W4380478936 creator A5006738935 @default.
- W4380478936 creator A5009116003 @default.
- W4380478936 creator A5025125692 @default.
- W4380478936 creator A5028739428 @default.
- W4380478936 creator A5033111996 @default.
- W4380478936 creator A5036283525 @default.
- W4380478936 creator A5052480553 @default.
- W4380478936 creator A5053931437 @default.
- W4380478936 creator A5058213496 @default.
- W4380478936 creator A5061864597 @default.
- W4380478936 creator A5063660789 @default.
- W4380478936 creator A5070775744 @default.
- W4380478936 creator A5074220692 @default.
- W4380478936 date "2023-08-01" @default.
- W4380478936 modified "2023-10-12" @default.
- W4380478936 title "A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities" @default.
- W4380478936 cites W1237899552 @default.
- W4380478936 cites W1655403841 @default.
- W4380478936 cites W1902027874 @default.
- W4380478936 cites W1963607549 @default.
- W4380478936 cites W1968245988 @default.
- W4380478936 cites W1981976602 @default.
- W4380478936 cites W1984576625 @default.
- W4380478936 cites W1984670836 @default.
- W4380478936 cites W1988176704 @default.
- W4380478936 cites W1994815372 @default.
- W4380478936 cites W1998938956 @default.
- W4380478936 cites W2011430131 @default.
- W4380478936 cites W2016544456 @default.
- W4380478936 cites W2017638691 @default.
- W4380478936 cites W2019249840 @default.
- W4380478936 cites W2019605235 @default.
- W4380478936 cites W2027442956 @default.
- W4380478936 cites W2033408431 @default.
- W4380478936 cites W2034347401 @default.
- W4380478936 cites W2039830881 @default.
- W4380478936 cites W2041117772 @default.
- W4380478936 cites W2041148025 @default.
- W4380478936 cites W2047549267 @default.
- W4380478936 cites W2052195912 @default.
- W4380478936 cites W2053489823 @default.
- W4380478936 cites W2057404971 @default.
- W4380478936 cites W2057582245 @default.
- W4380478936 cites W2058251110 @default.
- W4380478936 cites W2060680089 @default.
- W4380478936 cites W2067320359 @default.
- W4380478936 cites W2071884509 @default.
- W4380478936 cites W2074441081 @default.
- W4380478936 cites W2075614191 @default.
- W4380478936 cites W2075863731 @default.
- W4380478936 cites W2077509829 @default.
- W4380478936 cites W2081583987 @default.
- W4380478936 cites W2088252378 @default.
- W4380478936 cites W2089097786 @default.
- W4380478936 cites W2092075602 @default.
- W4380478936 cites W2101678239 @default.
- W4380478936 cites W2103421886 @default.
- W4380478936 cites W2106416284 @default.
- W4380478936 cites W2117631572 @default.
- W4380478936 cites W2118332032 @default.
- W4380478936 cites W2136951492 @default.
- W4380478936 cites W2139709933 @default.
- W4380478936 cites W2153154617 @default.
- W4380478936 cites W2158598687 @default.
- W4380478936 cites W2161160262 @default.
- W4380478936 cites W2171858547 @default.
- W4380478936 cites W2172000360 @default.
- W4380478936 cites W2181403436 @default.
- W4380478936 cites W2186294614 @default.
- W4380478936 cites W2194600065 @default.
- W4380478936 cites W2205436042 @default.
- W4380478936 cites W2205945645 @default.
- W4380478936 cites W2261059368 @default.
- W4380478936 cites W2431738724 @default.
- W4380478936 cites W2492586371 @default.
- W4380478936 cites W2499899645 @default.
- W4380478936 cites W2517986957 @default.
- W4380478936 cites W2528491735 @default.
- W4380478936 cites W2530966209 @default.
- W4380478936 cites W2567150323 @default.
- W4380478936 cites W2568967893 @default.
- W4380478936 cites W2582794771 @default.
- W4380478936 cites W2584156879 @default.
- W4380478936 cites W2735810309 @default.
- W4380478936 cites W2737416704 @default.
- W4380478936 cites W2739393620 @default.
- W4380478936 cites W2749751926 @default.
- W4380478936 cites W2751786729 @default.
- W4380478936 cites W2765280539 @default.
- W4380478936 cites W2765749944 @default.
- W4380478936 cites W2770429219 @default.
- W4380478936 cites W2787511792 @default.
- W4380478936 cites W2791405895 @default.
- W4380478936 cites W2793116851 @default.
- W4380478936 cites W2793509150 @default.
- W4380478936 cites W2793957901 @default.