Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380479953> ?p ?o ?g. }
- W4380479953 endingPage "107970" @default.
- W4380479953 startingPage "107970" @default.
- W4380479953 abstract "Precision agriculture (PA) and yield gap (Yg) analysis are promising strategies to achieve the desired sustainable intensification of agricultural production systems. Current crop Yg approaches do not consider the internal field yield variability caused by soil properties. Topographic and edaphic characteristics causing consistent high and low yield patterns in time and space can be interpreted as an ecological niche and used as proxies for potential yield (Yp) and Yg. Ecological niche models (ENMs) are statistical models originally developed to forecast a species’ niche. However, its application to analyse crop yield spatio-temporal variability has never been made. This study aimed to fill this void by developing a novel approach: i) to quantify the magnitude and spatio-temporal distribution of Yp and Yg, ii) to identify the main factors that cause the Yg, and iii) to provide statistical and agronomical interpretation of the data to reduce the Yg. We performed this work using high-resolution maize yield maps from three seasons, with an ancillary dataset composed of soil electrical conductivity, soil properties and digital elevation models provided by “Quinta da Cholda”, Portugal. The yield maps were averaged, resulting in a standardised multiyear yield map. The 90th and 10th yield percentiles were interpreted as proxies for Yp and Yg, and analysed by an ENM machine learning algorithm – maximum entropy (MaxEnt). The average Yg and Yp were quantified as 1.5 and 19.1 ton/ha. Yp was characterised by having silty, richer soils and lower elevations, with several nutritional factors above the critical limits to maintain higher yields. Yg had loam soils coupled with higher relative elevations and lower nutrition content. This innovative modelling approach can efficiently manage high-dimensional spatio-temporal data to support advanced PA solutions, allowing detailed support for narrowing the Yg." @default.
- W4380479953 created "2023-06-14" @default.
- W4380479953 creator A5031609456 @default.
- W4380479953 creator A5045950940 @default.
- W4380479953 creator A5071863710 @default.
- W4380479953 creator A5088304035 @default.
- W4380479953 date "2023-08-01" @default.
- W4380479953 modified "2023-09-27" @default.
- W4380479953 title "Filling the maize yield gap based on precision agriculture – A MaxEnt approach" @default.
- W4380479953 cites W1480626457 @default.
- W4380479953 cites W1568201516 @default.
- W4380479953 cites W178470099 @default.
- W4380479953 cites W1966811787 @default.
- W4380479953 cites W1978399942 @default.
- W4380479953 cites W1979583486 @default.
- W4380479953 cites W1981001639 @default.
- W4380479953 cites W1981207619 @default.
- W4380479953 cites W1982627164 @default.
- W4380479953 cites W1983513512 @default.
- W4380479953 cites W1988767767 @default.
- W4380479953 cites W1998025025 @default.
- W4380479953 cites W2000591933 @default.
- W4380479953 cites W2005405996 @default.
- W4380479953 cites W2037698607 @default.
- W4380479953 cites W2039877859 @default.
- W4380479953 cites W2082828381 @default.
- W4380479953 cites W2086058372 @default.
- W4380479953 cites W2091658151 @default.
- W4380479953 cites W2106946668 @default.
- W4380479953 cites W2107695795 @default.
- W4380479953 cites W2114891756 @default.
- W4380479953 cites W2117029825 @default.
- W4380479953 cites W2118182941 @default.
- W4380479953 cites W2123431229 @default.
- W4380479953 cites W2127170577 @default.
- W4380479953 cites W2139294194 @default.
- W4380479953 cites W2143799390 @default.
- W4380479953 cites W2146833082 @default.
- W4380479953 cites W2148170135 @default.
- W4380479953 cites W2154160829 @default.
- W4380479953 cites W2159292710 @default.
- W4380479953 cites W2164728103 @default.
- W4380479953 cites W2168113371 @default.
- W4380479953 cites W2170473141 @default.
- W4380479953 cites W2283647619 @default.
- W4380479953 cites W2340093241 @default.
- W4380479953 cites W2346831018 @default.
- W4380479953 cites W2514214316 @default.
- W4380479953 cites W2598320237 @default.
- W4380479953 cites W2605947899 @default.
- W4380479953 cites W2889842316 @default.
- W4380479953 cites W2889977714 @default.
- W4380479953 cites W2894325618 @default.
- W4380479953 cites W2914721251 @default.
- W4380479953 cites W2942942247 @default.
- W4380479953 cites W2945976633 @default.
- W4380479953 cites W2969247546 @default.
- W4380479953 cites W2978225160 @default.
- W4380479953 cites W3001511020 @default.
- W4380479953 cites W3016410151 @default.
- W4380479953 cites W3039861142 @default.
- W4380479953 cites W3043930057 @default.
- W4380479953 cites W3096311098 @default.
- W4380479953 cites W3103278630 @default.
- W4380479953 cites W3121848692 @default.
- W4380479953 cites W3133532427 @default.
- W4380479953 cites W3135523315 @default.
- W4380479953 cites W3141912187 @default.
- W4380479953 cites W3151159532 @default.
- W4380479953 cites W3185576263 @default.
- W4380479953 cites W3201703223 @default.
- W4380479953 cites W4200397128 @default.
- W4380479953 cites W4211056572 @default.
- W4380479953 cites W4224300583 @default.
- W4380479953 cites W4281629943 @default.
- W4380479953 cites W4290790450 @default.
- W4380479953 doi "https://doi.org/10.1016/j.compag.2023.107970" @default.
- W4380479953 hasPublicationYear "2023" @default.
- W4380479953 type Work @default.
- W4380479953 citedByCount "0" @default.
- W4380479953 crossrefType "journal-article" @default.
- W4380479953 hasAuthorship W4380479953A5031609456 @default.
- W4380479953 hasAuthorship W4380479953A5045950940 @default.
- W4380479953 hasAuthorship W4380479953A5071863710 @default.
- W4380479953 hasAuthorship W4380479953A5088304035 @default.
- W4380479953 hasBestOaLocation W43804799531 @default.
- W4380479953 hasConcept C105795698 @default.
- W4380479953 hasConcept C118518473 @default.
- W4380479953 hasConcept C120217122 @default.
- W4380479953 hasConcept C122048520 @default.
- W4380479953 hasConcept C126343540 @default.
- W4380479953 hasConcept C127313418 @default.
- W4380479953 hasConcept C134121241 @default.
- W4380479953 hasConcept C153991713 @default.
- W4380479953 hasConcept C159390177 @default.
- W4380479953 hasConcept C159750122 @default.
- W4380479953 hasConcept C187320778 @default.
- W4380479953 hasConcept C18903297 @default.