Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380479993> ?p ?o ?g. }
- W4380479993 endingPage "49" @default.
- W4380479993 startingPage "49" @default.
- W4380479993 abstract "Abstract Large imaging surveys, such as the Legacy Survey of Space and Time, rely on photometric redshifts and tomographic binning for 3 × 2 pt analyses that combine galaxy clustering and weak lensing. In this paper, we propose a method for optimizing the tomographic binning choice for the lens sample of galaxies. We divide the CosmoDC2 and Buzzard simulated galaxy catalogs into a training set and an application set, where the training set is nonrepresentative in a realistic way, and then estimate photometric redshifts for the application sets. The galaxies are sorted into redshift bins covering equal intervals of redshift or comoving distance, or with an equal number of galaxies in each bin, and we consider a generalized extension of these approaches. We find that bins of equal comoving distance produce the highest dark energy figure of merit of the initial binning choices, but that the choice of bin edges can be further optimized. We then train a neural network classifier to identify galaxies that are either highly likely to have accurate photometric redshift estimates or highly likely to be sorted into the correct redshift bin. The neural network classifier is used to remove poor redshift estimates from the sample, and the results are compared to the case when none of the sample is removed. We find that the neural network classifiers are able to improve the figure of merit by ∼13% and are able to recover ∼25% of the loss in the figure of merit that occurs when a nonrepresentative training sample is used." @default.
- W4380479993 created "2023-06-14" @default.
- W4380479993 creator A5026944546 @default.
- W4380479993 creator A5035813533 @default.
- W4380479993 creator A5035906227 @default.
- W4380479993 creator A5037134993 @default.
- W4380479993 creator A5038181582 @default.
- W4380479993 creator A5077555623 @default.
- W4380479993 date "2023-06-01" @default.
- W4380479993 modified "2023-10-14" @default.
- W4380479993 title "Improved Tomographic Binning of 3 × 2 pt Lens Samples: Neural Network Classifiers and Optimal Bin Assignments" @default.
- W4380479993 cites W1573578139 @default.
- W4380479993 cites W1943306457 @default.
- W4380479993 cites W1973368884 @default.
- W4380479993 cites W1973904296 @default.
- W4380479993 cites W1993283828 @default.
- W4380479993 cites W1995667613 @default.
- W4380479993 cites W2008877686 @default.
- W4380479993 cites W2015990127 @default.
- W4380479993 cites W2018719255 @default.
- W4380479993 cites W2032469582 @default.
- W4380479993 cites W2033030037 @default.
- W4380479993 cites W2097287587 @default.
- W4380479993 cites W2100185260 @default.
- W4380479993 cites W2120241018 @default.
- W4380479993 cites W2148719886 @default.
- W4380479993 cites W2155148078 @default.
- W4380479993 cites W2157544440 @default.
- W4380479993 cites W2167335950 @default.
- W4380479993 cites W2207069478 @default.
- W4380479993 cites W2211491388 @default.
- W4380479993 cites W2308024972 @default.
- W4380479993 cites W2557413462 @default.
- W4380479993 cites W2584691382 @default.
- W4380479993 cites W2613622082 @default.
- W4380479993 cites W2744012041 @default.
- W4380479993 cites W2797984385 @default.
- W4380479993 cites W2809045192 @default.
- W4380479993 cites W2912783529 @default.
- W4380479993 cites W2972399427 @default.
- W4380479993 cites W3005816386 @default.
- W4380479993 cites W3007608314 @default.
- W4380479993 cites W3046141395 @default.
- W4380479993 cites W3098057713 @default.
- W4380479993 cites W3098221464 @default.
- W4380479993 cites W3098225459 @default.
- W4380479993 cites W3098640821 @default.
- W4380479993 cites W3099186397 @default.
- W4380479993 cites W3099267591 @default.
- W4380479993 cites W3099268282 @default.
- W4380479993 cites W3099357154 @default.
- W4380479993 cites W3099799080 @default.
- W4380479993 cites W3101924714 @default.
- W4380479993 cites W3104062568 @default.
- W4380479993 cites W3105306684 @default.
- W4380479993 cites W3105347508 @default.
- W4380479993 cites W3105733428 @default.
- W4380479993 cites W3105865520 @default.
- W4380479993 cites W3105893637 @default.
- W4380479993 cites W3105901183 @default.
- W4380479993 cites W3107029590 @default.
- W4380479993 cites W3125762999 @default.
- W4380479993 cites W3162082109 @default.
- W4380479993 cites W3164156340 @default.
- W4380479993 cites W3166030703 @default.
- W4380479993 cites W3167662530 @default.
- W4380479993 cites W3183358109 @default.
- W4380479993 cites W3198862596 @default.
- W4380479993 cites W3215231986 @default.
- W4380479993 cites W4224879857 @default.
- W4380479993 cites W4230617792 @default.
- W4380479993 cites W4288079944 @default.
- W4380479993 cites W4297928110 @default.
- W4380479993 doi "https://doi.org/10.3847/1538-4357/accc88" @default.
- W4380479993 hasPublicationYear "2023" @default.
- W4380479993 type Work @default.
- W4380479993 citedByCount "0" @default.
- W4380479993 crossrefType "journal-article" @default.
- W4380479993 hasAuthorship W4380479993A5026944546 @default.
- W4380479993 hasAuthorship W4380479993A5035813533 @default.
- W4380479993 hasAuthorship W4380479993A5035906227 @default.
- W4380479993 hasAuthorship W4380479993A5037134993 @default.
- W4380479993 hasAuthorship W4380479993A5038181582 @default.
- W4380479993 hasAuthorship W4380479993A5077555623 @default.
- W4380479993 hasBestOaLocation W43804799931 @default.
- W4380479993 hasConcept C11413529 @default.
- W4380479993 hasConcept C120665830 @default.
- W4380479993 hasConcept C121332964 @default.
- W4380479993 hasConcept C130277099 @default.
- W4380479993 hasConcept C154945302 @default.
- W4380479993 hasConcept C156273044 @default.
- W4380479993 hasConcept C172790937 @default.
- W4380479993 hasConcept C190670322 @default.
- W4380479993 hasConcept C26405456 @default.
- W4380479993 hasConcept C2780974285 @default.
- W4380479993 hasConcept C33024259 @default.
- W4380479993 hasConcept C41008148 @default.
- W4380479993 hasConcept C44870925 @default.