Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380484778> ?p ?o ?g. }
- W4380484778 endingPage "288" @default.
- W4380484778 startingPage "288" @default.
- W4380484778 abstract "Although electrons (fermions)and photons (bosons) produce the same interference patterns in the two-slit experiments, known in optics for photons since the 17th Century, the description of these patterns for electrons and photons thus far was markedly different. Photons are spin one, relativistic and massless particles while electrons are spin half massive particles producing the same interference patterns irrespective to their speed. Experiments with other massive particles demonstrate the same kind of interference patterns. In spite of these differences, in the early 1930s of the 20th Century, the isomorphism between the source-free Maxwell and Dirac equations was established. In this work, we were permitted replace the Born probabilistic interpretation of quantum mechanics with the optical. In 1925, Rainich combined source-free Maxwell equations with Einstein’s equations for gravity. His results were rediscovered in the late 1950s by Misner and Wheeler, who introduced the word geometrodynamics” as a description of the unified field theory of gravity and electromagnetism. An absence of sources remained a problem in this unified theory until Ranada’s work of the late 1980s. However, his results required the existence of null electromagnetic fields. These were absent in Rainich–Misner–Wheeler’s geometrodynamics. They were added to it in the 1960s by Geroch. Ranada’s solutions of source-free Maxwell’s equations came out as knots and links. In this work, we establish that, due to their topology, these knots/links acquire masses and charges. They live on the Dupin cyclides—the invariants of Lie sphere geometry. Symmetries of Minkowski space-time also belong to this geometry. Using these symmetries, Varlamov recently demonstrated group-theoretically that the experimentally known mass spectrum for all mesons and baryons is obtainable with one formula, containing electron mass as an input. In this work, using some facts from polymer physics and differential geometry, a new proof of the knotty nature of the electron is established. The obtained result perfectly blends with the description of a rotating and charged black hole." @default.
- W4380484778 created "2023-06-14" @default.
- W4380484778 creator A5052473081 @default.
- W4380484778 date "2023-06-12" @default.
- W4380484778 modified "2023-09-30" @default.
- W4380484778 title "Maxwell-Dirac Isomorphism Revisited: From Foundations of Quantum Mechanics to Geometrodynamics and Cosmology" @default.
- W4380484778 cites W1498029772 @default.
- W4380484778 cites W1507225127 @default.
- W4380484778 cites W1520526619 @default.
- W4380484778 cites W1538440836 @default.
- W4380484778 cites W1544550560 @default.
- W4380484778 cites W1549037739 @default.
- W4380484778 cites W1557935173 @default.
- W4380484778 cites W1596163213 @default.
- W4380484778 cites W1718848952 @default.
- W4380484778 cites W1763631403 @default.
- W4380484778 cites W1796474103 @default.
- W4380484778 cites W1963627933 @default.
- W4380484778 cites W1964955115 @default.
- W4380484778 cites W1965329494 @default.
- W4380484778 cites W1973578167 @default.
- W4380484778 cites W1976218822 @default.
- W4380484778 cites W1984397641 @default.
- W4380484778 cites W1984921722 @default.
- W4380484778 cites W1985418025 @default.
- W4380484778 cites W1986318160 @default.
- W4380484778 cites W1987513691 @default.
- W4380484778 cites W1998233200 @default.
- W4380484778 cites W1998698694 @default.
- W4380484778 cites W2000754622 @default.
- W4380484778 cites W2002336007 @default.
- W4380484778 cites W2002498188 @default.
- W4380484778 cites W2004563249 @default.
- W4380484778 cites W2006549160 @default.
- W4380484778 cites W2006999102 @default.
- W4380484778 cites W2007087302 @default.
- W4380484778 cites W2007215353 @default.
- W4380484778 cites W2013253584 @default.
- W4380484778 cites W2013287603 @default.
- W4380484778 cites W2014173774 @default.
- W4380484778 cites W2014217600 @default.
- W4380484778 cites W2015443456 @default.
- W4380484778 cites W2016028610 @default.
- W4380484778 cites W2017957447 @default.
- W4380484778 cites W2019165800 @default.
- W4380484778 cites W2020756979 @default.
- W4380484778 cites W2021016652 @default.
- W4380484778 cites W2021617910 @default.
- W4380484778 cites W2024028276 @default.
- W4380484778 cites W2030094057 @default.
- W4380484778 cites W2041568853 @default.
- W4380484778 cites W2042841985 @default.
- W4380484778 cites W2048854183 @default.
- W4380484778 cites W2050809255 @default.
- W4380484778 cites W2052154877 @default.
- W4380484778 cites W2059856959 @default.
- W4380484778 cites W2064832196 @default.
- W4380484778 cites W2068434293 @default.
- W4380484778 cites W2069564325 @default.
- W4380484778 cites W2073774588 @default.
- W4380484778 cites W2074460594 @default.
- W4380484778 cites W2075707263 @default.
- W4380484778 cites W2078972787 @default.
- W4380484778 cites W2080634753 @default.
- W4380484778 cites W2086354968 @default.
- W4380484778 cites W2117291829 @default.
- W4380484778 cites W2124322760 @default.
- W4380484778 cites W2125737930 @default.
- W4380484778 cites W2126479355 @default.
- W4380484778 cites W2131707720 @default.
- W4380484778 cites W2140537813 @default.
- W4380484778 cites W2143292244 @default.
- W4380484778 cites W2166296016 @default.
- W4380484778 cites W2166425846 @default.
- W4380484778 cites W2231659680 @default.
- W4380484778 cites W2253767903 @default.
- W4380484778 cites W2259553937 @default.
- W4380484778 cites W2270721110 @default.
- W4380484778 cites W2463792745 @default.
- W4380484778 cites W2483006069 @default.
- W4380484778 cites W2488945364 @default.
- W4380484778 cites W2491655069 @default.
- W4380484778 cites W2500130907 @default.
- W4380484778 cites W2558528638 @default.
- W4380484778 cites W2591692480 @default.
- W4380484778 cites W2663848065 @default.
- W4380484778 cites W2685967590 @default.
- W4380484778 cites W2902588512 @default.
- W4380484778 cites W2913335413 @default.
- W4380484778 cites W2953090296 @default.
- W4380484778 cites W2962789333 @default.
- W4380484778 cites W2962996640 @default.
- W4380484778 cites W2963363938 @default.
- W4380484778 cites W2963691182 @default.
- W4380484778 cites W2972327865 @default.
- W4380484778 cites W2976615945 @default.
- W4380484778 cites W2978201757 @default.
- W4380484778 cites W3003549782 @default.