Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380490509> ?p ?o ?g. }
- W4380490509 abstract "High-dimensional time series data appear in many scientific areas in the current data-rich environment. Analysis of such data poses new challenges to data analysts because of not only the complicated dynamic dependence between the series, but also the existence of aberrant observations, such as missing values, contaminated observations, and heavy-tailed distributions. For high-dimensional vector autoregressive (VAR) models, we introduce a unified estimation procedure that is robust to model misspecification, heavy-tailed noise contamination, and conditional heteroscedasticity. The proposed methodology enjoys both statistical optimality and computational efficiency, and can handle many popular high-dimensional models, such as sparse, reduced-rank, banded, and network-structured VAR models. With proper regularization and data truncation, the estimation convergence rates are shown to be almost optimal in the minimax sense under a bounded (2+2ϵ)th moment condition. When ϵ≥1, the rates of convergence match those obtained under the sub-Gaussian assumption. Consistency of the proposed estimators is also established for some ϵ∈(0,1), with minimax optimal convergence rates associated with ϵ. The efficacy of the proposed estimation methods is demonstrated by simulation and a U.S. macroeconomic example." @default.
- W4380490509 created "2023-06-14" @default.
- W4380490509 creator A5032850247 @default.
- W4380490509 creator A5033579806 @default.
- W4380490509 date "2023-04-01" @default.
- W4380490509 modified "2023-10-01" @default.
- W4380490509 title "Rate-optimal robust estimation of high-dimensional vector autoregressive models" @default.
- W4380490509 cites W1964401556 @default.
- W4380490509 cites W1979575715 @default.
- W4380490509 cites W1984332158 @default.
- W4380490509 cites W1989898472 @default.
- W4380490509 cites W1999996900 @default.
- W4380490509 cites W2027859108 @default.
- W4380490509 cites W2046033161 @default.
- W4380490509 cites W2046118718 @default.
- W4380490509 cites W2068019718 @default.
- W4380490509 cites W2083474373 @default.
- W4380490509 cites W2087535060 @default.
- W4380490509 cites W2095225664 @default.
- W4380490509 cites W2098588523 @default.
- W4380490509 cites W2137620021 @default.
- W4380490509 cites W2147534083 @default.
- W4380490509 cites W2159700154 @default.
- W4380490509 cites W2162451874 @default.
- W4380490509 cites W2274029167 @default.
- W4380490509 cites W2338469198 @default.
- W4380490509 cites W2493647452 @default.
- W4380490509 cites W2586353914 @default.
- W4380490509 cites W2794809244 @default.
- W4380490509 cites W2884358540 @default.
- W4380490509 cites W2896398456 @default.
- W4380490509 cites W2907768713 @default.
- W4380490509 cites W2947626232 @default.
- W4380490509 cites W2950190315 @default.
- W4380490509 cites W2962730199 @default.
- W4380490509 cites W2962927523 @default.
- W4380490509 cites W2963368181 @default.
- W4380490509 cites W2963927498 @default.
- W4380490509 cites W2963945903 @default.
- W4380490509 cites W2979685185 @default.
- W4380490509 cites W2996540354 @default.
- W4380490509 cites W3022446978 @default.
- W4380490509 cites W3028794438 @default.
- W4380490509 cites W3081466081 @default.
- W4380490509 cites W3094117317 @default.
- W4380490509 cites W3097978408 @default.
- W4380490509 cites W3099324314 @default.
- W4380490509 cites W3100325525 @default.
- W4380490509 cites W3105322001 @default.
- W4380490509 cites W3105340263 @default.
- W4380490509 cites W3107841493 @default.
- W4380490509 cites W3124251522 @default.
- W4380490509 cites W3124353475 @default.
- W4380490509 cites W3125188740 @default.
- W4380490509 cites W3125912523 @default.
- W4380490509 cites W3192637965 @default.
- W4380490509 cites W4200546424 @default.
- W4380490509 cites W4251038355 @default.
- W4380490509 cites W4306158335 @default.
- W4380490509 cites W86770650 @default.
- W4380490509 doi "https://doi.org/10.1214/23-aos2278" @default.
- W4380490509 hasPublicationYear "2023" @default.
- W4380490509 type Work @default.
- W4380490509 citedByCount "2" @default.
- W4380490509 countsByYear W43804905092023 @default.
- W4380490509 crossrefType "journal-article" @default.
- W4380490509 hasAuthorship W4380490509A5032850247 @default.
- W4380490509 hasAuthorship W4380490509A5033579806 @default.
- W4380490509 hasBestOaLocation W43804905092 @default.
- W4380490509 hasConcept C101104100 @default.
- W4380490509 hasConcept C105795698 @default.
- W4380490509 hasConcept C106195933 @default.
- W4380490509 hasConcept C121332964 @default.
- W4380490509 hasConcept C126255220 @default.
- W4380490509 hasConcept C127162648 @default.
- W4380490509 hasConcept C143724316 @default.
- W4380490509 hasConcept C149728462 @default.
- W4380490509 hasConcept C149782125 @default.
- W4380490509 hasConcept C151730666 @default.
- W4380490509 hasConcept C159877910 @default.
- W4380490509 hasConcept C162324750 @default.
- W4380490509 hasConcept C179254644 @default.
- W4380490509 hasConcept C185429906 @default.
- W4380490509 hasConcept C23922673 @default.
- W4380490509 hasConcept C2524010 @default.
- W4380490509 hasConcept C2776436953 @default.
- W4380490509 hasConcept C2777303404 @default.
- W4380490509 hasConcept C28826006 @default.
- W4380490509 hasConcept C31258907 @default.
- W4380490509 hasConcept C33923547 @default.
- W4380490509 hasConcept C41008148 @default.
- W4380490509 hasConcept C50522688 @default.
- W4380490509 hasConcept C57869625 @default.
- W4380490509 hasConcept C65778772 @default.
- W4380490509 hasConcept C74650414 @default.
- W4380490509 hasConcept C86803240 @default.
- W4380490509 hasConcept C91602232 @default.
- W4380490509 hasConceptScore W4380490509C101104100 @default.
- W4380490509 hasConceptScore W4380490509C105795698 @default.
- W4380490509 hasConceptScore W4380490509C106195933 @default.