Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380490730> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W4380490730 abstract "The modal Θ-valent logic is a logic that contains all the thesis of the classical logical calculus and, besides allows to express notions of possibility, of necessity, and more others. The modal Θ-valent sets are the supports in term of the structure of the Θ-valent rings. A Θ chr (<i>m</i>Θ) is a structure which is rich at the same time of inheritance in the meaning of the romanian academician Gr. C. Moisil, as the algebraic model of a such logic. The set <img width=20 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image002.png /> contains the set <img width=10 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image007.png /> and the elements <img width=25 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image003.png /> such that the support of <i>x</i> is not congruent to 0 modulo <i>n</i>. In this paper the purpose is to define on <img width=40 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image008.png />, <i>p</i> prime, a notion of quadratic residues and quadratic character which respects its structure of <i>m</i>Θs. Hoping that this approach will bring something of interest to the notion of quadratic residues. First of all, we construct the modal Θ-valent congruences of (<img width=20 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image002.png />, <i>F<sub>α</sub></i>). We characterize the <i>m</i>Θ set (<img width=20 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image002.png />, <i>F<sub>α</sub></i>) and we then give some arithmetical and intrinsic <i>m</i>Θ parameters of <img width=20 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image002.png /> which lead us to the notion of factorial of <i>m</i> without <i>n</i> in <img width=20 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image002.png />, the <i>m</i>Θ quotient of (<img width=20 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image002.png />, <i>F<sub>α</sub></i>) modulo (<img width=30 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image004.png />) and a complete system of <i>m</i>Θ residues modulo <img width=30 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image004.png />, <img width=25 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image005.png />. After that, we define a <i>p</i>-valent modal quadratic residue, <i>p</i> prime. We characterize some properties of <i>p</i>-valent modal quadratic character and <i>p</i>-valent modal quadratic residue of <i>p<sup>k</sup></i> which establish the difference between the <i>m</i>Θ Euler’s theorem and the Euler’s theorem in the classical arithmetic. Later, we establish the theorem for determining the p-valent modal quadratic character of <img width=65 height=10 src=http://article.sciencepublishinggroup.com/journal/247/2471199/image006.png /> with respect to <i>p<sup>k</sup></i>. This theorem is a non-classical version of Gauss’s lemma. Finally, we establish an example introducing the law of quadratic reciprocity of Gauss." @default.
- W4380490730 created "2023-06-14" @default.
- W4380490730 creator A5092156927 @default.
- W4380490730 creator A5092156928 @default.
- W4380490730 creator A5092156929 @default.
- W4380490730 date "2023-01-23" @default.
- W4380490730 modified "2023-09-25" @default.
- W4380490730 title "The <i>m</i>Θ Quadratic Character in the <i>m</i>Θ Set <img width="40" height="20" src="http://article.sciencepublishinggroup.com/journal/247/2471199/image002.png" />" @default.
- W4380490730 doi "https://doi.org/10.11648/j.mcs.20230801.12" @default.
- W4380490730 hasPublicationYear "2023" @default.
- W4380490730 type Work @default.
- W4380490730 citedByCount "0" @default.
- W4380490730 crossrefType "journal-article" @default.
- W4380490730 hasAuthorship W4380490730A5092156927 @default.
- W4380490730 hasAuthorship W4380490730A5092156928 @default.
- W4380490730 hasAuthorship W4380490730A5092156929 @default.
- W4380490730 hasBestOaLocation W43804907301 @default.
- W4380490730 hasConcept C111919701 @default.
- W4380490730 hasConcept C114614502 @default.
- W4380490730 hasConcept C118615104 @default.
- W4380490730 hasConcept C126249665 @default.
- W4380490730 hasConcept C33923547 @default.
- W4380490730 hasConcept C41008148 @default.
- W4380490730 hasConceptScore W4380490730C111919701 @default.
- W4380490730 hasConceptScore W4380490730C114614502 @default.
- W4380490730 hasConceptScore W4380490730C118615104 @default.
- W4380490730 hasConceptScore W4380490730C126249665 @default.
- W4380490730 hasConceptScore W4380490730C33923547 @default.
- W4380490730 hasConceptScore W4380490730C41008148 @default.
- W4380490730 hasLocation W43804907301 @default.
- W4380490730 hasOpenAccess W4380490730 @default.
- W4380490730 hasPrimaryLocation W43804907301 @default.
- W4380490730 hasRelatedWork W1978042415 @default.
- W4380490730 hasRelatedWork W1978225469 @default.
- W4380490730 hasRelatedWork W1978588354 @default.
- W4380490730 hasRelatedWork W2017331178 @default.
- W4380490730 hasRelatedWork W2799759016 @default.
- W4380490730 hasRelatedWork W2976797620 @default.
- W4380490730 hasRelatedWork W3086542228 @default.
- W4380490730 hasRelatedWork W3088044682 @default.
- W4380490730 hasRelatedWork W3103555317 @default.
- W4380490730 hasRelatedWork W3104631496 @default.
- W4380490730 isParatext "false" @default.
- W4380490730 isRetracted "false" @default.
- W4380490730 workType "article" @default.