Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380521659> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4380521659 endingPage "1590" @default.
- W4380521659 startingPage "1584" @default.
- W4380521659 abstract "The fields of computer vision, image processing, and deep learning have seen exponential growth and advancement in recent years thanks to advances in technology. This renaissance has recently established itself as the dominant force in the field of automation. The ideas of image processing are easily applicable to the driving of automobiles, where the increasing sophistication of technology may one day make human drivers obsolete. However, the steering angle of a vehicle is the single most crucial component that comes into play when it comes to automation because this is what determines how the vehicle will take the curve. Automotive vehicles (AVs) have begun to take the steering angle prediction into consideration, and a large number of automotive businesses, like Tesla and Udacity, have also invested in the technology. Despite this, a significant number of researchers and insurance firms have shown interest in investing in this field. It has been determined that deep learning architectures are the most appropriate fundamentals that can be utilized in a situation like this one. As a result, this thesis suggests employing DL in order to anticipate the steering angle of autonomous vehicles. Image processing and CNN are the two components that make up the implementation, which is carried out in two separate modules. A collection of images are taken by the cameras that are mounted, and a steering angle is computed for each point along the path that the vehicle travels, taking into account the speed at which the vehicle is traveling as well as the amount of pressure that is being applied to the brake pedal. Image processing, which makes use of photos for the purpose of training, and data augmentation, which resizes the images, are both included in the first step of the execution process. The processed image that was obtained from the first phase is given as the input to the subsequent phase, and a predicted steering angle is generated as the output of this phase. The subsequent phase involves the use of CNN ideas." @default.
- W4380521659 created "2023-06-14" @default.
- W4380521659 creator A5084218517 @default.
- W4380521659 date "2021-02-26" @default.
- W4380521659 modified "2023-10-14" @default.
- W4380521659 title "Deep Learning for Steering Angle Prediction in Autonomous Vehicles" @default.
- W4380521659 doi "https://doi.org/10.17762/msea.v70i2.2448" @default.
- W4380521659 hasPublicationYear "2021" @default.
- W4380521659 type Work @default.
- W4380521659 citedByCount "0" @default.
- W4380521659 crossrefType "journal-article" @default.
- W4380521659 hasAuthorship W4380521659A5084218517 @default.
- W4380521659 hasBestOaLocation W43805216591 @default.
- W4380521659 hasConcept C115901376 @default.
- W4380521659 hasConcept C115961682 @default.
- W4380521659 hasConcept C127413603 @default.
- W4380521659 hasConcept C144024400 @default.
- W4380521659 hasConcept C146978453 @default.
- W4380521659 hasConcept C154945302 @default.
- W4380521659 hasConcept C168725872 @default.
- W4380521659 hasConcept C200756006 @default.
- W4380521659 hasConcept C202444582 @default.
- W4380521659 hasConcept C2524010 @default.
- W4380521659 hasConcept C28719098 @default.
- W4380521659 hasConcept C31972630 @default.
- W4380521659 hasConcept C33923547 @default.
- W4380521659 hasConcept C36289849 @default.
- W4380521659 hasConcept C41008148 @default.
- W4380521659 hasConcept C44154836 @default.
- W4380521659 hasConcept C526921623 @default.
- W4380521659 hasConcept C78519656 @default.
- W4380521659 hasConcept C9417928 @default.
- W4380521659 hasConcept C9652623 @default.
- W4380521659 hasConceptScore W4380521659C115901376 @default.
- W4380521659 hasConceptScore W4380521659C115961682 @default.
- W4380521659 hasConceptScore W4380521659C127413603 @default.
- W4380521659 hasConceptScore W4380521659C144024400 @default.
- W4380521659 hasConceptScore W4380521659C146978453 @default.
- W4380521659 hasConceptScore W4380521659C154945302 @default.
- W4380521659 hasConceptScore W4380521659C168725872 @default.
- W4380521659 hasConceptScore W4380521659C200756006 @default.
- W4380521659 hasConceptScore W4380521659C202444582 @default.
- W4380521659 hasConceptScore W4380521659C2524010 @default.
- W4380521659 hasConceptScore W4380521659C28719098 @default.
- W4380521659 hasConceptScore W4380521659C31972630 @default.
- W4380521659 hasConceptScore W4380521659C33923547 @default.
- W4380521659 hasConceptScore W4380521659C36289849 @default.
- W4380521659 hasConceptScore W4380521659C41008148 @default.
- W4380521659 hasConceptScore W4380521659C44154836 @default.
- W4380521659 hasConceptScore W4380521659C526921623 @default.
- W4380521659 hasConceptScore W4380521659C78519656 @default.
- W4380521659 hasConceptScore W4380521659C9417928 @default.
- W4380521659 hasConceptScore W4380521659C9652623 @default.
- W4380521659 hasIssue "2" @default.
- W4380521659 hasLocation W43805216591 @default.
- W4380521659 hasOpenAccess W4380521659 @default.
- W4380521659 hasPrimaryLocation W43805216591 @default.
- W4380521659 hasRelatedWork W2005185696 @default.
- W4380521659 hasRelatedWork W2080322084 @default.
- W4380521659 hasRelatedWork W2161229648 @default.
- W4380521659 hasRelatedWork W2235753890 @default.
- W4380521659 hasRelatedWork W23451984 @default.
- W4380521659 hasRelatedWork W2361114818 @default.
- W4380521659 hasRelatedWork W2993674027 @default.
- W4380521659 hasRelatedWork W3003164983 @default.
- W4380521659 hasRelatedWork W3214851576 @default.
- W4380521659 hasRelatedWork W2507763083 @default.
- W4380521659 hasVolume "70" @default.
- W4380521659 isParatext "false" @default.
- W4380521659 isRetracted "false" @default.
- W4380521659 workType "article" @default.