Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380521666> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4380521666 endingPage "1618" @default.
- W4380521666 startingPage "1609" @default.
- W4380521666 abstract "The usage of AI in the financial industry has increased the reliance on stochastic models for forecasting market behaviour. Quantitative analysts are constantly working to increase the precision with which machine learning models predict stock returns. Regression models using Support Vector Machine (SVM) and Random Forest are well renowned for their ability to predict closing prices with high accuracy. This study suggests a method for analysing and forecasting stock prices using an ensemble of these algorithms.Using basic market price data from India's National Stock Exchange (NSE), datasets are used that have been preprocessed to add common technical indicators as features. The size of the training dataset is decreased by using feature selection techniques to rank the features according to their impact on the final closing price. Sentiment analysis is also used in the study to examine the effect of investor sentiment on stock prices. Twitter postings with a specific corporate hashtag are rated as good or bad using a trained Word2Vec model. The ensemble model is then trained on a fresh dataset made up of counts of both positive and negative tweets across time as well as technical indicator data.This paper makes a contribution to the area by offering an ensemble model for stock price prediction that blends SVM and Random Forest regression models. The study illustrates the significance of feature selection in lowering dataset size as well as the limited influence of aggregated sentiment analysis from Twitter data on the performance of the model as a whole. For researchers and quantitative analysts looking to improve the precision of stock price prediction models in the financial industry, these findings offer invaluable insights." @default.
- W4380521666 created "2023-06-14" @default.
- W4380521666 creator A5060200490 @default.
- W4380521666 date "2021-02-26" @default.
- W4380521666 modified "2023-10-16" @default.
- W4380521666 title "Robotic Process Automation for Stock Selection Process and Price Prediction Model using Machine Learning Techniques" @default.
- W4380521666 doi "https://doi.org/10.17762/msea.v70i2.2451" @default.
- W4380521666 hasPublicationYear "2021" @default.
- W4380521666 type Work @default.
- W4380521666 citedByCount "0" @default.
- W4380521666 crossrefType "journal-article" @default.
- W4380521666 hasAuthorship W4380521666A5060200490 @default.
- W4380521666 hasBestOaLocation W43805216661 @default.
- W4380521666 hasConcept C108583219 @default.
- W4380521666 hasConcept C119857082 @default.
- W4380521666 hasConcept C119898033 @default.
- W4380521666 hasConcept C12267149 @default.
- W4380521666 hasConcept C127413603 @default.
- W4380521666 hasConcept C148483581 @default.
- W4380521666 hasConcept C149782125 @default.
- W4380521666 hasConcept C151730666 @default.
- W4380521666 hasConcept C154945302 @default.
- W4380521666 hasConcept C162324750 @default.
- W4380521666 hasConcept C169258074 @default.
- W4380521666 hasConcept C204036174 @default.
- W4380521666 hasConcept C2776461190 @default.
- W4380521666 hasConcept C2778827112 @default.
- W4380521666 hasConcept C2780299701 @default.
- W4380521666 hasConcept C2780762169 @default.
- W4380521666 hasConcept C41008148 @default.
- W4380521666 hasConcept C41608201 @default.
- W4380521666 hasConcept C66402592 @default.
- W4380521666 hasConcept C78519656 @default.
- W4380521666 hasConcept C86803240 @default.
- W4380521666 hasConcept C93959086 @default.
- W4380521666 hasConceptScore W4380521666C108583219 @default.
- W4380521666 hasConceptScore W4380521666C119857082 @default.
- W4380521666 hasConceptScore W4380521666C119898033 @default.
- W4380521666 hasConceptScore W4380521666C12267149 @default.
- W4380521666 hasConceptScore W4380521666C127413603 @default.
- W4380521666 hasConceptScore W4380521666C148483581 @default.
- W4380521666 hasConceptScore W4380521666C149782125 @default.
- W4380521666 hasConceptScore W4380521666C151730666 @default.
- W4380521666 hasConceptScore W4380521666C154945302 @default.
- W4380521666 hasConceptScore W4380521666C162324750 @default.
- W4380521666 hasConceptScore W4380521666C169258074 @default.
- W4380521666 hasConceptScore W4380521666C204036174 @default.
- W4380521666 hasConceptScore W4380521666C2776461190 @default.
- W4380521666 hasConceptScore W4380521666C2778827112 @default.
- W4380521666 hasConceptScore W4380521666C2780299701 @default.
- W4380521666 hasConceptScore W4380521666C2780762169 @default.
- W4380521666 hasConceptScore W4380521666C41008148 @default.
- W4380521666 hasConceptScore W4380521666C41608201 @default.
- W4380521666 hasConceptScore W4380521666C66402592 @default.
- W4380521666 hasConceptScore W4380521666C78519656 @default.
- W4380521666 hasConceptScore W4380521666C86803240 @default.
- W4380521666 hasConceptScore W4380521666C93959086 @default.
- W4380521666 hasIssue "2" @default.
- W4380521666 hasLocation W43805216661 @default.
- W4380521666 hasOpenAccess W4380521666 @default.
- W4380521666 hasPrimaryLocation W43805216661 @default.
- W4380521666 hasRelatedWork W2985924212 @default.
- W4380521666 hasRelatedWork W3034132578 @default.
- W4380521666 hasRelatedWork W3165907317 @default.
- W4380521666 hasRelatedWork W3195168932 @default.
- W4380521666 hasRelatedWork W4212852473 @default.
- W4380521666 hasRelatedWork W4213444042 @default.
- W4380521666 hasRelatedWork W4225360065 @default.
- W4380521666 hasRelatedWork W4293525103 @default.
- W4380521666 hasRelatedWork W4327511089 @default.
- W4380521666 hasRelatedWork W4378215441 @default.
- W4380521666 hasVolume "70" @default.
- W4380521666 isParatext "false" @default.
- W4380521666 isRetracted "false" @default.
- W4380521666 workType "article" @default.