Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380536532> ?p ?o ?g. }
- W4380536532 endingPage "2222" @default.
- W4380536532 startingPage "2222" @default.
- W4380536532 abstract "The quality of groundwater is of utmost importance, as it directly impacts human health and the environment. In major parts of the world, groundwater is the main source of drinking water, hence it is essential to periodically monitor its quality. Conventional water-quality monitoring techniques involve the periodical collection of water samples and subsequent analysis in the laboratory. This process is expensive, time-consuming and involves a lot of manual labor, whereas data-driven models based on artificial intelligence can offer an alternative and more efficient way to predict groundwater quality. In spite of the advantages of such models based on artificial neural network (ANN) and ant colony optimization (ACO), no studies have been carried out on the applications of these in the field of groundwater contamination. The aim of our study is to build an ant colony optimized neural network for predicting groundwater quality parameters. We have proposed ANN comprising of six hidden layers. The approach was validated using our groundwater quality dataset of a hard rock region located in the northern part of Karnataka, India. Groundwater samples were collected by us once every 4 months from March 2014 to October 2020 from 50 wells in this region. These samples were analyzed for the pH, electrical conductivity, Na+, Ca+, K+, Mg2+, HCO3−, F−, Cl− and U+. This temporal dataset was split for training, testing and validation of our model. Metrics such as R2 (Coefficient of Determination), RMSE (Root Mean Squared Error), NSE (Nash–Sutcliffe efficiencies) and MAE (Mean Absolute Error) were used to evaluate the prediction error and model performance. These performance evaluation metrics indicated the efficiency of our model in predicting the temporal variation in groundwater quality parameters. The method proposed can be used for prediction and it will aid in modifying or reducing the temporal frequency of sample collection to save time and cost. The study confirms that the combination of ANN with ACO is a promising tool to optimize weights while training the network, and for prediction of groundwater quality." @default.
- W4380536532 created "2023-06-14" @default.
- W4380536532 creator A5029501165 @default.
- W4380536532 creator A5061045658 @default.
- W4380536532 creator A5066148840 @default.
- W4380536532 date "2023-06-13" @default.
- W4380536532 modified "2023-09-30" @default.
- W4380536532 title "Ant Colony Based Artificial Neural Network for Predicting Spatial and Temporal Variation in Groundwater Quality" @default.
- W4380536532 cites W1497843332 @default.
- W4380536532 cites W1600206445 @default.
- W4380536532 cites W1888268865 @default.
- W4380536532 cites W1912463333 @default.
- W4380536532 cites W1966994480 @default.
- W4380536532 cites W1992169317 @default.
- W4380536532 cites W1993879632 @default.
- W4380536532 cites W1994884548 @default.
- W4380536532 cites W1996136400 @default.
- W4380536532 cites W2002134958 @default.
- W4380536532 cites W2010541215 @default.
- W4380536532 cites W2027554150 @default.
- W4380536532 cites W2028573940 @default.
- W4380536532 cites W2044862737 @default.
- W4380536532 cites W2074669169 @default.
- W4380536532 cites W2081997761 @default.
- W4380536532 cites W2093643917 @default.
- W4380536532 cites W2108206395 @default.
- W4380536532 cites W2110517097 @default.
- W4380536532 cites W2116208828 @default.
- W4380536532 cites W2147746661 @default.
- W4380536532 cites W2162642306 @default.
- W4380536532 cites W2289152296 @default.
- W4380536532 cites W2309032750 @default.
- W4380536532 cites W2574632235 @default.
- W4380536532 cites W2596380933 @default.
- W4380536532 cites W2767758861 @default.
- W4380536532 cites W2768460810 @default.
- W4380536532 cites W2769711616 @default.
- W4380536532 cites W2772148654 @default.
- W4380536532 cites W2777334859 @default.
- W4380536532 cites W2785103246 @default.
- W4380536532 cites W2901312569 @default.
- W4380536532 cites W2912698222 @default.
- W4380536532 cites W2916048747 @default.
- W4380536532 cites W2938308298 @default.
- W4380536532 cites W2946608181 @default.
- W4380536532 cites W2946755099 @default.
- W4380536532 cites W2955999448 @default.
- W4380536532 cites W2964946495 @default.
- W4380536532 cites W2970835038 @default.
- W4380536532 cites W2996409750 @default.
- W4380536532 cites W3004447104 @default.
- W4380536532 cites W3006101764 @default.
- W4380536532 cites W3089869686 @default.
- W4380536532 cites W3106370744 @default.
- W4380536532 cites W3113873473 @default.
- W4380536532 cites W3129047942 @default.
- W4380536532 cites W3165692101 @default.
- W4380536532 cites W3175134873 @default.
- W4380536532 cites W3177827474 @default.
- W4380536532 cites W3199582889 @default.
- W4380536532 cites W3207585842 @default.
- W4380536532 cites W322643198 @default.
- W4380536532 cites W4200606497 @default.
- W4380536532 cites W4205496622 @default.
- W4380536532 cites W4254401059 @default.
- W4380536532 cites W4317725498 @default.
- W4380536532 cites W4320168803 @default.
- W4380536532 cites W4367317532 @default.
- W4380536532 cites W803853334 @default.
- W4380536532 cites W2073494443 @default.
- W4380536532 doi "https://doi.org/10.3390/w15122222" @default.
- W4380536532 hasPublicationYear "2023" @default.
- W4380536532 type Work @default.
- W4380536532 citedByCount "2" @default.
- W4380536532 countsByYear W43805365322023 @default.
- W4380536532 crossrefType "journal-article" @default.
- W4380536532 hasAuthorship W4380536532A5029501165 @default.
- W4380536532 hasAuthorship W4380536532A5061045658 @default.
- W4380536532 hasAuthorship W4380536532A5066148840 @default.
- W4380536532 hasBestOaLocation W43805365321 @default.
- W4380536532 hasConcept C105795698 @default.
- W4380536532 hasConcept C124101348 @default.
- W4380536532 hasConcept C127413603 @default.
- W4380536532 hasConcept C139945424 @default.
- W4380536532 hasConcept C154945302 @default.
- W4380536532 hasConcept C187320778 @default.
- W4380536532 hasConcept C18903297 @default.
- W4380536532 hasConcept C2780797713 @default.
- W4380536532 hasConcept C33923547 @default.
- W4380536532 hasConcept C39432304 @default.
- W4380536532 hasConcept C40128228 @default.
- W4380536532 hasConcept C41008148 @default.
- W4380536532 hasConcept C50644808 @default.
- W4380536532 hasConcept C76177295 @default.
- W4380536532 hasConcept C76886044 @default.
- W4380536532 hasConcept C86803240 @default.
- W4380536532 hasConceptScore W4380536532C105795698 @default.
- W4380536532 hasConceptScore W4380536532C124101348 @default.