Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380551330> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4380551330 abstract "Energy-Dissipative Evolutionary Deep Operator Neural Network is an operator learning neural network. It is designed to seed numerical solutions for a class of partial differential equations instead of a single partial differential equation, such as partial differential equations with different parameters or different initial conditions. The network consists of two sub-networks, the Branch net and the Trunk net. For an objective operator G, the Branch net encodes different input functions u at the same number of sensors, and the Trunk net evaluates the output function at any location. By minimizing the error between the evaluated output q and the expected output G(u)(y), DeepONet generates a good approximation of the operator G. In order to preserve essential physical properties of PDEs, such as the Energy Dissipation Law, we adopt a scalar auxiliary variable approach to generate the minimization problem. It introduces a modified energy and enables unconditional energy dissipation law at the discrete level. By taking the parameter as a function of time t, this network can predict the accurate solution at any further time with feeding data only at the initial state. The data needed can be generated by the initial conditions, which are readily available. In order to validate the accuracy and efficiency of our neural networks, we provide numerical simulations of several partial differential equations, including heat equations, parametric heat equations and Allen-Cahn equations." @default.
- W4380551330 created "2023-06-14" @default.
- W4380551330 creator A5028981574 @default.
- W4380551330 creator A5078138445 @default.
- W4380551330 creator A5079691564 @default.
- W4380551330 creator A5085751424 @default.
- W4380551330 date "2023-06-09" @default.
- W4380551330 modified "2023-10-16" @default.
- W4380551330 title "Energy-Dissipative Evolutionary Deep Operator Neural Networks" @default.
- W4380551330 doi "https://doi.org/10.48550/arxiv.2306.06281" @default.
- W4380551330 hasPublicationYear "2023" @default.
- W4380551330 type Work @default.
- W4380551330 citedByCount "0" @default.
- W4380551330 crossrefType "posted-content" @default.
- W4380551330 hasAuthorship W4380551330A5028981574 @default.
- W4380551330 hasAuthorship W4380551330A5078138445 @default.
- W4380551330 hasAuthorship W4380551330A5079691564 @default.
- W4380551330 hasAuthorship W4380551330A5085751424 @default.
- W4380551330 hasBestOaLocation W43805513301 @default.
- W4380551330 hasConcept C104317684 @default.
- W4380551330 hasConcept C105795698 @default.
- W4380551330 hasConcept C112714845 @default.
- W4380551330 hasConcept C117251300 @default.
- W4380551330 hasConcept C121332964 @default.
- W4380551330 hasConcept C126255220 @default.
- W4380551330 hasConcept C134306372 @default.
- W4380551330 hasConcept C135402231 @default.
- W4380551330 hasConcept C154945302 @default.
- W4380551330 hasConcept C158448853 @default.
- W4380551330 hasConcept C17020691 @default.
- W4380551330 hasConcept C185592680 @default.
- W4380551330 hasConcept C2775924081 @default.
- W4380551330 hasConcept C28826006 @default.
- W4380551330 hasConcept C33923547 @default.
- W4380551330 hasConcept C41008148 @default.
- W4380551330 hasConcept C47446073 @default.
- W4380551330 hasConcept C50644808 @default.
- W4380551330 hasConcept C53846429 @default.
- W4380551330 hasConcept C55493867 @default.
- W4380551330 hasConcept C62520636 @default.
- W4380551330 hasConcept C86339819 @default.
- W4380551330 hasConcept C93779851 @default.
- W4380551330 hasConcept C97355855 @default.
- W4380551330 hasConcept C99692599 @default.
- W4380551330 hasConceptScore W4380551330C104317684 @default.
- W4380551330 hasConceptScore W4380551330C105795698 @default.
- W4380551330 hasConceptScore W4380551330C112714845 @default.
- W4380551330 hasConceptScore W4380551330C117251300 @default.
- W4380551330 hasConceptScore W4380551330C121332964 @default.
- W4380551330 hasConceptScore W4380551330C126255220 @default.
- W4380551330 hasConceptScore W4380551330C134306372 @default.
- W4380551330 hasConceptScore W4380551330C135402231 @default.
- W4380551330 hasConceptScore W4380551330C154945302 @default.
- W4380551330 hasConceptScore W4380551330C158448853 @default.
- W4380551330 hasConceptScore W4380551330C17020691 @default.
- W4380551330 hasConceptScore W4380551330C185592680 @default.
- W4380551330 hasConceptScore W4380551330C2775924081 @default.
- W4380551330 hasConceptScore W4380551330C28826006 @default.
- W4380551330 hasConceptScore W4380551330C33923547 @default.
- W4380551330 hasConceptScore W4380551330C41008148 @default.
- W4380551330 hasConceptScore W4380551330C47446073 @default.
- W4380551330 hasConceptScore W4380551330C50644808 @default.
- W4380551330 hasConceptScore W4380551330C53846429 @default.
- W4380551330 hasConceptScore W4380551330C55493867 @default.
- W4380551330 hasConceptScore W4380551330C62520636 @default.
- W4380551330 hasConceptScore W4380551330C86339819 @default.
- W4380551330 hasConceptScore W4380551330C93779851 @default.
- W4380551330 hasConceptScore W4380551330C97355855 @default.
- W4380551330 hasConceptScore W4380551330C99692599 @default.
- W4380551330 hasLocation W43805513301 @default.
- W4380551330 hasOpenAccess W4380551330 @default.
- W4380551330 hasPrimaryLocation W43805513301 @default.
- W4380551330 hasRelatedWork W1768186960 @default.
- W4380551330 hasRelatedWork W1923443161 @default.
- W4380551330 hasRelatedWork W1993252238 @default.
- W4380551330 hasRelatedWork W2019676222 @default.
- W4380551330 hasRelatedWork W2030793536 @default.
- W4380551330 hasRelatedWork W2147356504 @default.
- W4380551330 hasRelatedWork W2151294958 @default.
- W4380551330 hasRelatedWork W2903168038 @default.
- W4380551330 hasRelatedWork W3101199082 @default.
- W4380551330 hasRelatedWork W4289219760 @default.
- W4380551330 isParatext "false" @default.
- W4380551330 isRetracted "false" @default.
- W4380551330 workType "article" @default.